Anti-sintering MgAl2O4 supported Pt-Ge nanoparticles for propane dehydrogenation: Catalytic insights and machine-learning aided performance analysis

脱氢 催化作用 丙烷 化学吸附 烧结 材料科学 纳米颗粒 分压 反应速率 化学工程 无机化学 化学 纳米技术 冶金 氧气 有机化学 工程类
作者
Sajjad Rimaz,Maryam Sabbaghan,Mohammadreza Kosari,Mehrdad Zarinejad,Mohammad Amini
出处
期刊:Molecular Catalysis [Elsevier BV]
卷期号:531: 112695-112695 被引量:7
标识
DOI:10.1016/j.mcat.2022.112695
摘要

In the present study, the catalytic performance of Pt nanoparticles in Propane Dehydrogenation (PDH) over two different supports (Commercial Al2O3 and MgAl2O4) was evaluated using experimental methods combined with Machine Learning. Different characterization techniques, including HAADF-STEM, H2-TPR, NH3-TPD, C3H6-TPD, XPS, BET, CO-chemisorption, CO-DRIFT, and TPO, were used to unravel the correlation between catalytic performance of the Pt nanoparticles with the promoter and the supports employed during PDH. Firstly, experimental analyses indicate that Ge modifies the geometric and electronic properties of Pt as the active metal in the reaction. Moreover, using MgAl2O4 instead of commercial Al2O3 support boosted the performance of Pt-Ge nanoparticles due to its anti-sintering nature and fewer acidic centers. Finally, the influence of operation conditions on the reaction rate of the best sample was investigated with machine learning. The gradient boosting tree model was employed to learn from relevant variables, including temperature, partial pressure of propane, and partial pressure of hydrogen and propylene in the feed. The results reveal the importance of the parameters on the reaction rate as Temperature > P(C3H8) > P(C3H6) > P(H2). Even though hydrogen has the least effect on the reaction rate, it is essential to co-feed hydrogen to suppress coke formation in PDH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助cyan采纳,获得30
1秒前
puff完成签到,获得积分10
3秒前
Flllllll完成签到,获得积分10
5秒前
6秒前
6秒前
QQ完成签到,获得积分10
8秒前
蔚欢发布了新的文献求助10
10秒前
12秒前
Akim应助罗拉采纳,获得10
13秒前
丘比特应助Heartlark采纳,获得10
13秒前
13秒前
延文星完成签到,获得积分20
15秒前
16秒前
xyj6486发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
bkagyin应助shao采纳,获得10
18秒前
糟糕的日记本完成签到,获得积分10
18秒前
蔚欢完成签到,获得积分10
19秒前
mx发布了新的文献求助10
21秒前
一川烟叶完成签到,获得积分10
21秒前
22秒前
时尚俊驰发布了新的文献求助10
23秒前
23秒前
整齐小松鼠应助mini采纳,获得10
25秒前
恋雅颖月应助liii采纳,获得10
27秒前
罗拉发布了新的文献求助10
29秒前
persist完成签到,获得积分10
30秒前
讨厌科研发布了新的文献求助10
30秒前
沉默曼文发布了新的文献求助40
31秒前
研友_VZG7GZ应助如梦如幻91采纳,获得10
31秒前
32秒前
充电宝应助mx采纳,获得10
33秒前
隐形曼青应助时尚俊驰采纳,获得10
34秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
科研通AI5应助文献采纳,获得30
38秒前
cyan关注了科研通微信公众号
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173