Anti-sintering MgAl2O4 supported Pt-Ge nanoparticles for propane dehydrogenation: Catalytic insights and machine-learning aided performance analysis

脱氢 催化作用 丙烷 化学吸附 烧结 材料科学 纳米颗粒 分压 反应速率 化学工程 无机化学 化学 纳米技术 冶金 氧气 有机化学 工程类
作者
Sajjad Rimaz,Maryam Sabbaghan,Mohammadreza Kosari,Mehrdad Zarinejad,Mohammad Amini
出处
期刊:Molecular Catalysis [Elsevier BV]
卷期号:531: 112695-112695 被引量:7
标识
DOI:10.1016/j.mcat.2022.112695
摘要

In the present study, the catalytic performance of Pt nanoparticles in Propane Dehydrogenation (PDH) over two different supports (Commercial Al2O3 and MgAl2O4) was evaluated using experimental methods combined with Machine Learning. Different characterization techniques, including HAADF-STEM, H2-TPR, NH3-TPD, C3H6-TPD, XPS, BET, CO-chemisorption, CO-DRIFT, and TPO, were used to unravel the correlation between catalytic performance of the Pt nanoparticles with the promoter and the supports employed during PDH. Firstly, experimental analyses indicate that Ge modifies the geometric and electronic properties of Pt as the active metal in the reaction. Moreover, using MgAl2O4 instead of commercial Al2O3 support boosted the performance of Pt-Ge nanoparticles due to its anti-sintering nature and fewer acidic centers. Finally, the influence of operation conditions on the reaction rate of the best sample was investigated with machine learning. The gradient boosting tree model was employed to learn from relevant variables, including temperature, partial pressure of propane, and partial pressure of hydrogen and propylene in the feed. The results reveal the importance of the parameters on the reaction rate as Temperature > P(C3H8) > P(C3H6) > P(H2). Even though hydrogen has the least effect on the reaction rate, it is essential to co-feed hydrogen to suppress coke formation in PDH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Onism完成签到,获得积分10
刚刚
李爱国应助平常的紫蓝采纳,获得10
1秒前
药毛儿发布了新的文献求助10
1秒前
彭于晏应助menghongmei采纳,获得10
2秒前
Ava应助carrotleah采纳,获得10
3秒前
祁i完成签到,获得积分10
4秒前
脑洞疼应助郭晗采纳,获得10
5秒前
6秒前
6秒前
7秒前
9秒前
猪猪hero应助小白采纳,获得10
9秒前
八爪鱼完成签到 ,获得积分10
10秒前
11秒前
11秒前
chang发布了新的文献求助10
11秒前
12秒前
负蕲发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
领导范儿应助赵怡宁采纳,获得10
14秒前
14秒前
16秒前
16秒前
英姑应助凉茶采纳,获得10
16秒前
咖啡蓝图发布了新的文献求助10
17秒前
郭晗发布了新的文献求助10
17秒前
ker发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
oc666888完成签到,获得积分10
17秒前
18秒前
所所应助好好采纳,获得10
18秒前
黄哈哈完成签到,获得积分10
18秒前
李健的粉丝团团长应助xmx采纳,获得10
19秒前
空2完成签到 ,获得积分0
19秒前
Hin66发布了新的文献求助10
20秒前
21秒前
21秒前
ding应助勤恳的夏之采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028