Nacelle optimisation through multi-fidelity neural networks

机舱 空气动力学 计算机科学 人工神经网络 计算流体力学 数学优化 自由度(物理和化学) 控制理论(社会学) 人工智能 数学 工程类 涡轮机 航空航天工程 物理 控制(管理) 量子力学
作者
F. M. Sánchez-Moreno,David G. MacManus,Fernando Tejero,Christopher Sheaf
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald Publishing Limited]
卷期号:34 (9): 3615-3634
标识
DOI:10.1108/hff-12-2023-0745
摘要

Purpose Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles. Design/methodology/approach The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively. Findings Ratios of low- and high-fidelity training samples to degrees of freedom of n LF /n DOFs = 50 and n HF /n DOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage. Originality/value The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助高兴采文采纳,获得10
1秒前
大杨发布了新的文献求助10
1秒前
2秒前
王彤发布了新的文献求助50
2秒前
2秒前
隐形曼青应助机灵白桃采纳,获得10
3秒前
狮子卷卷完成签到,获得积分10
3秒前
天天快乐应助小明同学采纳,获得10
3秒前
5秒前
wanci应助小枣采纳,获得10
7秒前
8秒前
重要问筠发布了新的文献求助10
8秒前
8秒前
伯云发布了新的文献求助10
8秒前
汉堡包应助搞怪世德采纳,获得10
8秒前
Jasper应助科研小白鼠采纳,获得10
8秒前
风中楷瑞发布了新的文献求助10
8秒前
9秒前
小马奔奔发布了新的文献求助10
9秒前
Jasper应助笨笨含羞草采纳,获得10
9秒前
青野发布了新的文献求助10
9秒前
9秒前
大杨完成签到,获得积分20
10秒前
11秒前
张光辉发布了新的文献求助10
12秒前
研友_VZG7GZ应助七曜采纳,获得30
12秒前
共享精神应助默默乘云采纳,获得10
13秒前
peanut完成签到 ,获得积分10
13秒前
宋宋宋2完成签到,获得积分10
13秒前
正直发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
大胆老头关注了科研通微信公众号
16秒前
17秒前
追寻书雁完成签到 ,获得积分10
17秒前
18秒前
18秒前
jin完成签到 ,获得积分10
18秒前
18秒前
研友_VZG7GZ应助无情的匪采纳,获得10
18秒前
伯云完成签到,获得积分10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214