已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nacelle optimisation through multi-fidelity neural networks

机舱 空气动力学 计算机科学 人工神经网络 计算流体力学 数学优化 自由度(物理和化学) 控制理论(社会学) 人工智能 数学 工程类 涡轮机 航空航天工程 物理 控制(管理) 量子力学
作者
F. M. Sánchez-Moreno,David G. MacManus,Fernando Tejero,Christopher Sheaf
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald (MCB UP)]
卷期号:34 (9): 3615-3634
标识
DOI:10.1108/hff-12-2023-0745
摘要

Purpose Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles. Design/methodology/approach The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively. Findings Ratios of low- and high-fidelity training samples to degrees of freedom of n LF /n DOFs = 50 and n HF /n DOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage. Originality/value The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
思源应助Hu采纳,获得10
3秒前
5秒前
帕克发布了新的文献求助10
6秒前
gxy完成签到,获得积分10
7秒前
淡淡的新之完成签到,获得积分10
8秒前
啾咪发布了新的文献求助10
11秒前
大辉完成签到 ,获得积分10
12秒前
哈哈哈关注了科研通微信公众号
13秒前
Hu完成签到,获得积分10
13秒前
失眠凌青发布了新的文献求助80
15秒前
无花果应助zcz采纳,获得10
16秒前
18秒前
栗子完成签到 ,获得积分10
19秒前
爆米花应助Cola采纳,获得10
19秒前
Cain应助打爆英语采纳,获得10
20秒前
21秒前
失眠凌青完成签到,获得积分10
23秒前
Akim应助彩色德天采纳,获得10
23秒前
asdfggg发布了新的文献求助10
23秒前
明亮梦山完成签到 ,获得积分10
24秒前
kalani完成签到,获得积分10
25秒前
zcz发布了新的文献求助10
27秒前
27秒前
哈哈哈发布了新的文献求助10
30秒前
31秒前
vuluv完成签到,获得积分10
33秒前
彩色德天发布了新的文献求助10
34秒前
火翟丰丰山心完成签到 ,获得积分10
36秒前
iTaciturne完成签到,获得积分10
37秒前
37秒前
39秒前
Jasper应助黄帅比采纳,获得10
39秒前
CipherSage应助罗4采纳,获得10
39秒前
渡星舟发布了新的文献求助10
41秒前
43秒前
呼叫外星人完成签到,获得积分10
45秒前
大模型应助淡定的达达采纳,获得10
45秒前
racill发布了新的文献求助10
48秒前
49秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738