材料科学
淀粉
复合材料
极限抗拉强度
生物复合材料
复合数
聚合物
延伸率
食品科学
化学
作者
Yunguo Liu,Sike Jiang,Fangqing Weng,Zimu Luo,Huiling Wang,Qiangxian Wu
标识
DOI:10.1002/star.202300214
摘要
Abstract This study uses biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and renewable natural polymer corn starch (CS) as raw materials to prepare a high starch content PBAT/CS composite material. The composite is prepared by blending corn starch in a higher proportion with biodegradable PBAT, using polyurethane prepolymer as a compatibilizer. The effects of CS content on the properties of the composites are investigated. The results of SEM show that the interface compatibility between PBAT and CS improves considerably with the addition of PCL‐based polyurethane pre‐polymer (PCLPU). Compared with PBAT/CS composites without PCLPU, the elongation at break of PBAT/CS composites with 10 wt% PCLPU is 31.9% (at the condition of 50% CS content), which is nearly 21 times higher, and the tensile strength is 18.9 MPa, which is almost two times higher. Moreover, the obtained compatible PBAT/CS composites show good thermal and hydrophilic properties. The results demonstrate that the addition of PCLPU compatibilizer has a positive impact on the fabrication of PBAT‐based polymer composites that contain high proportion of biomass. Moreover, PBAT‐based polymer composites with a high starch content hold promising prospects in the realm of biodegradable materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI