Estimating black carbon levels using machine learning models in high-concentration regions

环境科学 多层感知器 空气污染 污染 人工神经网络 微粒 大气科学 气象学 机器学习 计算机科学 地理 化学 有机化学 地质学 生态学 生物
作者
Pratima Gupta,Pau Ferrer-Cid,José M. Barceló-Ordinas,Jorge Garcı́a-Vidal,Vijay Kumar Soni,Mira L. Pöhlker,Ajit Ahlawat,Mar Viana
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:948: 174804-174804
标识
DOI:10.1016/j.scitotenv.2024.174804
摘要

Black carbon (BC) is emitted into the atmosphere during combustion processes, often in conjunction with emissions such as nitrogen oxides (NOx) and ozone (O3), which are also by-products of combustion. In highly polluted regions, combustion processes are one of the main sources of aerosols and particulate matter (PM) concentrations, which affect the radiative budget. Despite the high relevance of this air pollution metric, BC monitoring is quite expensive in terms of instrumentation and of maintenance and servicing. With the aim to provide tools to estimate BC while minimising instrumentation costs, we use machine learning approaches to estimate BC from air pollution and meteorological parameters (NOx, O3, PM2.5, relative humidity (RH), and solar radiation (SR)) from currently available networks. We assess the effectiveness of various machine learning models, such as random forest (RF), support vector regression (SVR), and multilayer perceptron (MLP) artificial neural network, for predicting black carbon (BC) mass concentrations in areas with high BC levels such as Northern Indian cities (Delhi and Agra), across different seasons. The results demonstrate comparable effectiveness among the models, with the multilayer perceptron (MLP) showing the most promising results. In addition, the comparability between estimated and monitored BC concentrations was high. In Delhi, the MLP shows high correlations between measured and modelled concentrations during winter (R2: 0.85) and post-monsoon (R2: 0.83) seasons, and notable metrics in the pre-monsoon (R2: 0.72). The results from Agra are consistent with those from Delhi, highlighting the consistency of the neural network's performance. These results highlight the usefulness of machine learning, particularly MLP, as a valuable tool for predicting BC concentrations. This approach provides critical new opportunities for urban air quality management and mitigation strategies and may be especially valuable for megacities in medium- and low-income regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
elivsZhou发布了新的文献求助10
2秒前
litpand完成签到,获得积分0
3秒前
大个应助学霸宇大王采纳,获得10
3秒前
HRB完成签到 ,获得积分10
3秒前
科研通AI5应助云青采纳,获得10
4秒前
SciGPT应助lllllty采纳,获得10
5秒前
renxiaoting发布了新的文献求助10
5秒前
6秒前
6秒前
Kirin完成签到,获得积分10
6秒前
csr发布了新的文献求助10
7秒前
Lyric_完成签到,获得积分10
7秒前
hfdz完成签到,获得积分10
7秒前
8秒前
颖二二发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
科研通AI5应助学术渣渣采纳,获得10
15秒前
15秒前
leo应助william采纳,获得10
15秒前
17秒前
lllllty发布了新的文献求助10
18秒前
诸天蓉发布了新的文献求助10
19秒前
21秒前
今后应助雍雍采纳,获得10
21秒前
21秒前
aishaniya发布了新的文献求助10
22秒前
22秒前
田様应助懒洋洋采纳,获得10
22秒前
云青发布了新的文献求助10
23秒前
23秒前
Ma完成签到,获得积分10
25秒前
Nichols完成签到,获得积分10
25秒前
25秒前
27秒前
收拾收拾发布了新的文献求助10
27秒前
liying完成签到,获得积分10
28秒前
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732635
求助须知:如何正确求助?哪些是违规求助? 3276792
关于积分的说明 9998808
捐赠科研通 2992393
什么是DOI,文献DOI怎么找? 1642263
邀请新用户注册赠送积分活动 780263
科研通“疑难数据库(出版商)”最低求助积分说明 748713