Uniporter公司
生物
相互作用体
细胞生物学
线粒体
钙信号传导
钙
钙通道
T型钙通道
信号转导
生物化学
胞浆
化学
基因
酶
有机化学
作者
Hilda Delgado de la Herran,Denis Vecellio Reane,Yiming Cheng,Máté Katona,Fabian Hosp,Elisa Greotti,Jennifer Wettmarshausen,Maria Patrón,Hermine Mohr,Natália Prudente de Mello,Margarita Chudenkova,Matteo Gorza,Safal Walia,Michael Sheng-Fu Feng,Anja Leimpek,Dirk Mielenz,Natalia S. Pellegata,Thomas Langer,György Hajnóczky,Matthias Mann,Marta Murgia,Fabiana Perocchi
标识
DOI:10.1038/s44318-024-00219-w
摘要
Abstract The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake. We identify 89 high-confidence interactors that link MCUC to several mitochondrial complexes and pathways, half of which are associated with human disease. As a proof-of-concept, we validate the mitochondrial intermembrane space protein EFHD1 as a binding partner of the MCUC subunits MCU, EMRE, and MCUB. We further show a MICU1-dependent inhibitory effect of EFHD1 on calcium uptake. Next, we systematically survey compensatory mechanisms and functional consequences of mitochondrial calcium dyshomeostasis by analyzing the MCU interactome upon EMRE, MCUB, MICU1, or MICU2 knockdown. While silencing EMRE reduces MCU interconnectivity, MCUB loss-of-function leads to a wider interaction network. Our study provides a comprehensive and high-confidence resource to gain insights into players and mechanisms regulating mitochondrial calcium signaling and their relevance in human diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI