生物合成
半胱氨酸
质体
光合作用
生物化学
叶绿体
细胞生物学
生物
化学
植物
基因
酶
作者
Ashna Adhikari,Simrandeep Kaur,F. Forouhar,Shiv D. Kale,Sang-Wook Park
摘要
Abstract A primary precursor of jasmonates, 12-oxo-phytodienoic acid (OPDA), is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward sulfur assimilation in the chloroplasts, incorporating sulfide into cysteine. Under stressed states, OPDA—accumulated in the chloroplasts—binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e−) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). CSC formation and its metabolic products (especially glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting expression of OPDA-responsive genes such as GLUTAREDOXIN 480 and CYTOCHROME P450, and triggering defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.
科研通智能强力驱动
Strongly Powered by AbleSci AI