DeepB3P: A transformer-based model for identifying blood-brain barrier penetrating peptides with data augmentation using feedback GAN

计算机科学 变压器 标杆管理 人工智能 鉴定(生物学) 机器学习 深度学习 药物发现 生物信息学 生物 电气工程 工程类 电压 植物 营销 业务
作者
Qiang Tang,Wei Chen
出处
期刊:Journal of Advanced Research [Elsevier]
标识
DOI:10.1016/j.jare.2024.08.002
摘要

The blood–brain barrier (BBB) serves as a critical structural barrier and impedes the entry of most neurotherapeutic drugs into the brain. This poses substantial challenges for central nervous system (CNS) drug development, as there is a lack of efficient drug delivery technologies to overcome this obstacle. BBB penetrating peptides (BBBPs) hold promise in overcoming the BBB and facilitating the delivery of drug molecules to the brain. Therefore, precise identification of BBBPs has become a crucial step in CNS drug development. However, most computational methods are designed based on conventional models that inadequately capture the intricate interaction between BBBPs and the BBB. Moreover, the performance of these methods was further hampered by unbalanced datasets. This study addresses the problem of unbalanced datasets in BBBP prediction and proposes a powerful predictor for efficiently and accurately identifying BBBPs, as well as generating analogous BBBPs. A transformer-based deep learning model, DeepB3P, was proposed for predicting BBBP. The feedback generative adversarial network (FBGAN) model was employed to effectively generate analogous BBBPs, addressing data imbalance. The FBGAN model possesses the ability to generate novel BBBP-like peptides, effectively mitigating the data imbalance in BBBP prediction. Extensive experiments on benchmarking datasets demonstrated that DeepB3P outperforms other BBBP prediction models by approximately 9.09%, 4.55% and 9.41% in terms of specificity, accuracy, and Matthew's correlation coefficient, respectively. For accelerating the progress in BBBP identification and CNS drug design, the proposed DeepB3P was implemented as a webserver, which is accessible at http://cbcb.cdutcm.edu.cn/deepb3p/. The interpretable analyses provided by DeepB3P offer valuable insights and enhance downstream analyses for BBBP identification. Moreover, the BBBP-like peptides generated by FBGAN hold potential as candidates for CNS drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的之槐完成签到 ,获得积分10
刚刚
朱斯彬完成签到,获得积分20
刚刚
怕黑寒烟完成签到,获得积分10
刚刚
1秒前
大大大霖霖完成签到,获得积分10
1秒前
1秒前
2秒前
琉璃发布了新的文献求助10
2秒前
小鹿发布了新的文献求助20
2秒前
隐形曼青应助尤萨采纳,获得10
2秒前
3秒前
蔡扬鹏发布了新的文献求助10
6秒前
李健的小迷弟应助zhao采纳,获得10
6秒前
科研通AI2S应助郭n采纳,获得10
6秒前
bkagyin应助快去读文献采纳,获得10
6秒前
7秒前
香蕉觅云应助清脆的又蓝采纳,获得30
8秒前
聪慧小燕发布了新的文献求助10
8秒前
怕黑寒烟发布了新的文献求助10
8秒前
爆米花应助bob采纳,获得10
8秒前
cocolu应助jessie采纳,获得100
10秒前
爱寻完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
脑洞疼应助余红采纳,获得10
12秒前
13秒前
13秒前
蔡扬鹏完成签到,获得积分10
14秒前
脑洞疼应助AIME采纳,获得10
14秒前
15秒前
Xiangguang发布了新的文献求助10
16秒前
puzhongjiMiQ发布了新的文献求助10
16秒前
17秒前
17秒前
尤萨发布了新的文献求助10
18秒前
笑傲完成签到,获得积分10
18秒前
18秒前
19秒前
哈哈发布了新的文献求助10
19秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433940
求助须知:如何正确求助?哪些是违规求助? 3031105
关于积分的说明 8940918
捐赠科研通 2719112
什么是DOI,文献DOI怎么找? 1491653
科研通“疑难数据库(出版商)”最低求助积分说明 689357
邀请新用户注册赠送积分活动 685523