DeepB3P: A transformer-based model for identifying blood-brain barrier penetrating peptides with data augmentation using feedback GAN

计算机科学 变压器 标杆管理 人工智能 鉴定(生物学) 机器学习 深度学习 药物发现 生物信息学 生物 电气工程 工程类 电压 植物 营销 业务
作者
Qiang Tang,Wei Chen
出处
期刊:Journal of Advanced Research [Elsevier BV]
标识
DOI:10.1016/j.jare.2024.08.002
摘要

The blood–brain barrier (BBB) serves as a critical structural barrier and impedes the entry of most neurotherapeutic drugs into the brain. This poses substantial challenges for central nervous system (CNS) drug development, as there is a lack of efficient drug delivery technologies to overcome this obstacle. BBB penetrating peptides (BBBPs) hold promise in overcoming the BBB and facilitating the delivery of drug molecules to the brain. Therefore, precise identification of BBBPs has become a crucial step in CNS drug development. However, most computational methods are designed based on conventional models that inadequately capture the intricate interaction between BBBPs and the BBB. Moreover, the performance of these methods was further hampered by unbalanced datasets. This study addresses the problem of unbalanced datasets in BBBP prediction and proposes a powerful predictor for efficiently and accurately identifying BBBPs, as well as generating analogous BBBPs. A transformer-based deep learning model, DeepB3P, was proposed for predicting BBBP. The feedback generative adversarial network (FBGAN) model was employed to effectively generate analogous BBBPs, addressing data imbalance. The FBGAN model possesses the ability to generate novel BBBP-like peptides, effectively mitigating the data imbalance in BBBP prediction. Extensive experiments on benchmarking datasets demonstrated that DeepB3P outperforms other BBBP prediction models by approximately 9.09%, 4.55% and 9.41% in terms of specificity, accuracy, and Matthew's correlation coefficient, respectively. For accelerating the progress in BBBP identification and CNS drug design, the proposed DeepB3P was implemented as a webserver, which is accessible at http://cbcb.cdutcm.edu.cn/deepb3p/. The interpretable analyses provided by DeepB3P offer valuable insights and enhance downstream analyses for BBBP identification. Moreover, the BBBP-like peptides generated by FBGAN hold potential as candidates for CNS drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小富完成签到,获得积分10
1秒前
QWE完成签到,获得积分10
1秒前
leeteukxx完成签到,获得积分10
1秒前
科研通AI5应助秋海棠采纳,获得10
2秒前
4秒前
eyu驳回了chen应助
4秒前
安安完成签到,获得积分20
5秒前
王琼完成签到 ,获得积分10
9秒前
栗爷完成签到,获得积分10
10秒前
坚强的安柏完成签到,获得积分10
10秒前
11秒前
天天呼的海角完成签到,获得积分10
11秒前
等待的代容完成签到,获得积分10
14秒前
孤独的问凝完成签到,获得积分10
16秒前
我刚上小学完成签到,获得积分10
16秒前
18秒前
大个应助阿冷采纳,获得10
18秒前
扬之水发布了新的文献求助10
21秒前
22秒前
Zp完成签到,获得积分10
23秒前
你不知道完成签到 ,获得积分10
23秒前
单纯的爆米花完成签到,获得积分10
23秒前
初七完成签到 ,获得积分10
24秒前
杰克李李发布了新的文献求助10
24秒前
小巧灯泡完成签到,获得积分10
25秒前
Wayne完成签到,获得积分10
26秒前
欢喜若灵完成签到,获得积分10
27秒前
张文发布了新的文献求助10
28秒前
lily_may发布了新的文献求助10
29秒前
Allen完成签到,获得积分10
29秒前
30秒前
夏夜完成签到 ,获得积分10
30秒前
zhy完成签到,获得积分10
30秒前
Fnaki完成签到,获得积分20
30秒前
31秒前
zccjy发布了新的文献求助10
33秒前
34秒前
stop here完成签到,获得积分10
35秒前
35秒前
小杨完成签到 ,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689