Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging

人工智能 卷积神经网络 深度学习 计算机科学 精准农业 环境科学 遥感 农业 地理 考古
作者
Yixin Deng,Nan Xin,Longgang Zhao,Hongtao Shi,Limiao Deng,Zhongzhi Han,Guangxia Wu
出处
期刊:Plants [Multidisciplinary Digital Publishing Institute]
卷期号:13 (15): 2089-2089
标识
DOI:10.3390/plants13152089
摘要

Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches. A total of six classic convolutional neural network (CNN) models-AlexNet, GoogLeNet, ResNet50, ShuffleNet, SqueezeNet, and MobileNetv2-are evaluated for salt stress recognition based on three types of ChlF images. Results indicate that ResNet50 outperforms other models in classifying salt stress levels across three types of ChlF images. Furthermore, feature fusion after extracting three types of ChlF image features in the average pooling layer of ResNet50 significantly enhanced classification accuracy, achieving the highest accuracy of 98.61% in particular when fusing features from three types of ChlF images. UMAP dimensionality reduction analysis confirms the discriminative power of fused features in distinguishing salt stress levels. These findings underscore the efficacy of deep learning and ChlF imaging technologies in elucidating plant responses to salt stress, offering insights for precision agriculture and crop management. Overall, this study demonstrates the potential of integrating deep learning with ChlF imaging for precise and efficient crop stress detection, offering a robust tool for advancing precision agriculture. The findings contribute to enhancing agricultural sustainability and addressing global food security challenges by enabling more effective crop stress management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助友好若南采纳,获得10
2秒前
Skye完成签到 ,获得积分10
3秒前
3秒前
刘刘发布了新的文献求助10
4秒前
tiankong发布了新的文献求助10
4秒前
5秒前
友好小刺猬完成签到,获得积分10
5秒前
6秒前
8秒前
可以发布了新的文献求助10
9秒前
9秒前
ZW发布了新的文献求助10
9秒前
tiankong完成签到,获得积分10
10秒前
LL完成签到,获得积分10
11秒前
lin发布了新的文献求助10
12秒前
可爱的函函应助欢喜采纳,获得10
15秒前
xie69完成签到,获得积分10
15秒前
张张完成签到,获得积分10
16秒前
我是来开会的完成签到,获得积分10
17秒前
FashionBoy应助PPP采纳,获得10
18秒前
18秒前
18秒前
18秒前
热孜宛古丽给热孜宛古丽的求助进行了留言
19秒前
20秒前
Rabbit发布了新的文献求助10
21秒前
zc98发布了新的文献求助10
23秒前
AnJaShua发布了新的文献求助10
23秒前
开朗雪巧完成签到,获得积分10
23秒前
Bronx完成签到,获得积分10
24秒前
daiyu发布了新的文献求助10
25秒前
香蕉耳机完成签到 ,获得积分20
29秒前
30秒前
30秒前
31秒前
32秒前
完美世界应助简单平蓝采纳,获得10
33秒前
Hello应助ysy采纳,获得10
33秒前
善学以致用应助低温少年采纳,获得50
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954504
求助须知:如何正确求助?哪些是违规求助? 3500506
关于积分的说明 11099678
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786251
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801717