Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging

人工智能 卷积神经网络 深度学习 计算机科学 精准农业 环境科学 遥感 农业 地理 考古
作者
Yixin Deng,Nan Xin,Longgang Zhao,Hongtao Shi,Limiao Deng,Zhongzhi Han,Guangxia Wu
出处
期刊:Plants [MDPI AG]
卷期号:13 (15): 2089-2089
标识
DOI:10.3390/plants13152089
摘要

Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches. A total of six classic convolutional neural network (CNN) models-AlexNet, GoogLeNet, ResNet50, ShuffleNet, SqueezeNet, and MobileNetv2-are evaluated for salt stress recognition based on three types of ChlF images. Results indicate that ResNet50 outperforms other models in classifying salt stress levels across three types of ChlF images. Furthermore, feature fusion after extracting three types of ChlF image features in the average pooling layer of ResNet50 significantly enhanced classification accuracy, achieving the highest accuracy of 98.61% in particular when fusing features from three types of ChlF images. UMAP dimensionality reduction analysis confirms the discriminative power of fused features in distinguishing salt stress levels. These findings underscore the efficacy of deep learning and ChlF imaging technologies in elucidating plant responses to salt stress, offering insights for precision agriculture and crop management. Overall, this study demonstrates the potential of integrating deep learning with ChlF imaging for precise and efficient crop stress detection, offering a robust tool for advancing precision agriculture. The findings contribute to enhancing agricultural sustainability and addressing global food security challenges by enabling more effective crop stress management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轩辕德地发布了新的文献求助10
1秒前
nine发布了新的文献求助30
1秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
2秒前
JamesPei应助小敦采纳,获得10
2秒前
今非发布了新的文献求助10
2秒前
李健的小迷弟应助通~采纳,获得30
2秒前
2秒前
2秒前
fanfan44390发布了新的文献求助10
2秒前
Zhang完成签到,获得积分10
3秒前
小二郎应助小田采纳,获得10
4秒前
4秒前
隐形曼青应助liike采纳,获得10
4秒前
phd发布了新的文献求助10
4秒前
4秒前
dingdong发布了新的文献求助30
4秒前
Orange应助清秀的语山采纳,获得50
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
大李包完成签到,获得积分10
5秒前
思源应助费城青年采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
帮助我的人永远不死完成签到,获得积分20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
LZQ应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
1221211应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794