Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging

人工智能 卷积神经网络 深度学习 计算机科学 精准农业 环境科学 遥感 农业 地理 考古
作者
Yixin Deng,Nan Xin,Longgang Zhao,Hongtao Shi,Limiao Deng,Zhongzhi Han,Guangxia Wu
出处
期刊:Plants [MDPI AG]
卷期号:13 (15): 2089-2089
标识
DOI:10.3390/plants13152089
摘要

Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches. A total of six classic convolutional neural network (CNN) models-AlexNet, GoogLeNet, ResNet50, ShuffleNet, SqueezeNet, and MobileNetv2-are evaluated for salt stress recognition based on three types of ChlF images. Results indicate that ResNet50 outperforms other models in classifying salt stress levels across three types of ChlF images. Furthermore, feature fusion after extracting three types of ChlF image features in the average pooling layer of ResNet50 significantly enhanced classification accuracy, achieving the highest accuracy of 98.61% in particular when fusing features from three types of ChlF images. UMAP dimensionality reduction analysis confirms the discriminative power of fused features in distinguishing salt stress levels. These findings underscore the efficacy of deep learning and ChlF imaging technologies in elucidating plant responses to salt stress, offering insights for precision agriculture and crop management. Overall, this study demonstrates the potential of integrating deep learning with ChlF imaging for precise and efficient crop stress detection, offering a robust tool for advancing precision agriculture. The findings contribute to enhancing agricultural sustainability and addressing global food security challenges by enabling more effective crop stress management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
liwei发布了新的文献求助10
2秒前
David发布了新的文献求助30
2秒前
3秒前
Dada发布了新的文献求助10
3秒前
方强发布了新的文献求助10
3秒前
雪芜发布了新的文献求助10
4秒前
卜卜发布了新的文献求助10
4秒前
Jianjiama发布了新的文献求助10
5秒前
5秒前
完美的天空应助badada采纳,获得20
7秒前
dadawang给dadawang的求助进行了留言
8秒前
充电宝应助niumi190采纳,获得20
12秒前
paparazzi221应助失眠冷卉采纳,获得30
13秒前
14秒前
14秒前
阳光大有应助无奈的邪欢采纳,获得10
14秒前
耶律遗风发布了新的文献求助10
15秒前
15秒前
小狗不是抠脚兵完成签到 ,获得积分10
16秒前
16秒前
16秒前
liwei完成签到,获得积分20
17秒前
今后应助daidai采纳,获得10
17秒前
Akim应助周雪峰采纳,获得10
17秒前
Aki发布了新的文献求助10
18秒前
20秒前
李子完成签到 ,获得积分10
21秒前
21秒前
冰山未闯发布了新的文献求助10
21秒前
23秒前
23秒前
生物小神完成签到,获得积分20
23秒前
25秒前
25秒前
CodeCraft应助wenze采纳,获得10
25秒前
洁净的天思完成签到,获得积分20
26秒前
连渡完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297