Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging

人工智能 卷积神经网络 深度学习 计算机科学 精准农业 环境科学 遥感 农业 地理 考古
作者
Yixin Deng,Nan Xin,Longgang Zhao,Hongtao Shi,Limiao Deng,Zhongzhi Han,Guangxia Wu
出处
期刊:Plants [MDPI AG]
卷期号:13 (15): 2089-2089
标识
DOI:10.3390/plants13152089
摘要

Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches. A total of six classic convolutional neural network (CNN) models-AlexNet, GoogLeNet, ResNet50, ShuffleNet, SqueezeNet, and MobileNetv2-are evaluated for salt stress recognition based on three types of ChlF images. Results indicate that ResNet50 outperforms other models in classifying salt stress levels across three types of ChlF images. Furthermore, feature fusion after extracting three types of ChlF image features in the average pooling layer of ResNet50 significantly enhanced classification accuracy, achieving the highest accuracy of 98.61% in particular when fusing features from three types of ChlF images. UMAP dimensionality reduction analysis confirms the discriminative power of fused features in distinguishing salt stress levels. These findings underscore the efficacy of deep learning and ChlF imaging technologies in elucidating plant responses to salt stress, offering insights for precision agriculture and crop management. Overall, this study demonstrates the potential of integrating deep learning with ChlF imaging for precise and efficient crop stress detection, offering a robust tool for advancing precision agriculture. The findings contribute to enhancing agricultural sustainability and addressing global food security challenges by enabling more effective crop stress management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当当完成签到,获得积分20
1秒前
冥灵花火完成签到,获得积分10
1秒前
北林发布了新的文献求助10
3秒前
J.完成签到 ,获得积分10
3秒前
Ava应助Ming采纳,获得10
5秒前
6秒前
CodeCraft应助现代的绣连采纳,获得10
7秒前
大模型应助CY采纳,获得10
8秒前
赘婿应助Meng采纳,获得10
8秒前
L.完成签到,获得积分10
8秒前
10秒前
董倍儿瘦发布了新的文献求助10
10秒前
子车茗应助fengshaohua采纳,获得20
11秒前
夜神月发布了新的文献求助10
11秒前
13秒前
爆米花应助LUNE采纳,获得30
13秒前
赘婿应助乔磊采纳,获得10
13秒前
在水一方应助biubiu采纳,获得20
13秒前
弗洛莉娅完成签到,获得积分10
13秒前
14秒前
15秒前
jjf完成签到,获得积分10
16秒前
俊秀的半雪完成签到,获得积分10
16秒前
ljy发布了新的文献求助10
16秒前
Lucas应助Onionplink采纳,获得10
17秒前
andy完成签到,获得积分10
19秒前
北林完成签到,获得积分10
19秒前
20秒前
CY发布了新的文献求助10
20秒前
jjf发布了新的文献求助10
20秒前
22秒前
当当发布了新的文献求助10
22秒前
zgn关闭了zgn文献求助
23秒前
Amber发布了新的文献求助10
24秒前
25秒前
犹豫忆灵完成签到,获得积分10
25秒前
汉堡包应助朴实的无极采纳,获得10
27秒前
27秒前
南北3199完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832