Short-Term Wind Speed Prediction Study Based on Variational Mode Decompositions–Sparrow Search Algorithm–Gated Recurrent Units

麻雀 期限(时间) 算法 模式(计算机接口) 风速 计算机科学 加速 气象学 物理 并行计算 生物 生态学 量子力学 操作系统
作者
Tongrui Yang,Xihao Guo,Guowei Qian
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (8): 1741-1741
标识
DOI:10.3390/pr12081741
摘要

Improving the accuracy of short-term wind speed predictions is crucial for mitigating the impact on power systems when integrating wind power into an electricity grid. This study developed a hybrid short-term wind speed prediction method, termed VMD–SSA–GRU, by combining variational mode decomposition (VMD) with gated recurrent units (GRUs) and optimizing it using a sparrow search algorithm (SSA). Initially, VMD was used to decompose the wind speed time series into subtime series. After reconstructing these subtime series, a GRU model was employed to establish separate prediction models for each series. Furthermore, an enhanced SSA was proposed to optimize the hyperparameters of the GRU model, which improved the prediction accuracy. Ultimately, the sub-series predictions were aggregated to produce the final wind speed prediction values. The predictive accuracy of this model was validated using the wind speed data measured at a meteorological station near a bridge site. The performance of the VMD–SSA–GRU model was compared with several other hybrid models, including those using wavelet transform, long short-term memory, and other neural networks. Comparably, the RMSE value of the VMD-SSA-GRU model was lower by 25.3%, 60.2%, and 61.7% in comparison to the VMD–SSA–LSTM, VMD–GRU, and VMD–LSTM models, respectively. The experimental results demonstrated that the proposed method achieved higher prediction accuracy than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tumbleweed668发布了新的文献求助10
3秒前
4秒前
6秒前
玖生发布了新的文献求助10
6秒前
充电宝应助张利双采纳,获得10
6秒前
7秒前
时梦冉完成签到 ,获得积分10
7秒前
giriraffe完成签到 ,获得积分10
8秒前
爆米花应助haku采纳,获得10
8秒前
莫茹发布了新的文献求助10
9秒前
11112完成签到,获得积分10
10秒前
困敦发布了新的文献求助10
11秒前
念姬发布了新的文献求助10
13秒前
15秒前
丁丁猫发布了新的文献求助10
16秒前
Rondab应助清秀代天采纳,获得10
17秒前
无语的寒天完成签到 ,获得积分10
19秒前
酷酷的冰真应助邢文瑞采纳,获得50
21秒前
22秒前
着急的无剑完成签到 ,获得积分10
23秒前
Xee完成签到,获得积分20
24秒前
搜集达人应助科研通管家采纳,获得100
25秒前
田様应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
yznfly应助科研通管家采纳,获得30
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
yznfly应助科研通管家采纳,获得30
25秒前
yznfly应助科研通管家采纳,获得30
26秒前
orixero应助科研通管家采纳,获得10
26秒前
26秒前
yznfly应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
玖生完成签到,获得积分10
27秒前
斯文败类应助Tumbleweed668采纳,获得10
27秒前
方法发布了新的文献求助20
27秒前
甘草完成签到,获得积分10
27秒前
28秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579