Short-Term Wind Speed Prediction Study Based on Variational Mode Decompositions–Sparrow Search Algorithm–Gated Recurrent Units

麻雀 期限(时间) 算法 模式(计算机接口) 风速 计算机科学 加速 气象学 物理 并行计算 生物 生态学 量子力学 操作系统
作者
Tongrui Yang,Xihao Guo,Guowei Qian
出处
期刊:Processes [MDPI AG]
卷期号:12 (8): 1741-1741
标识
DOI:10.3390/pr12081741
摘要

Improving the accuracy of short-term wind speed predictions is crucial for mitigating the impact on power systems when integrating wind power into an electricity grid. This study developed a hybrid short-term wind speed prediction method, termed VMD–SSA–GRU, by combining variational mode decomposition (VMD) with gated recurrent units (GRUs) and optimizing it using a sparrow search algorithm (SSA). Initially, VMD was used to decompose the wind speed time series into subtime series. After reconstructing these subtime series, a GRU model was employed to establish separate prediction models for each series. Furthermore, an enhanced SSA was proposed to optimize the hyperparameters of the GRU model, which improved the prediction accuracy. Ultimately, the sub-series predictions were aggregated to produce the final wind speed prediction values. The predictive accuracy of this model was validated using the wind speed data measured at a meteorological station near a bridge site. The performance of the VMD–SSA–GRU model was compared with several other hybrid models, including those using wavelet transform, long short-term memory, and other neural networks. Comparably, the RMSE value of the VMD-SSA-GRU model was lower by 25.3%, 60.2%, and 61.7% in comparison to the VMD–SSA–LSTM, VMD–GRU, and VMD–LSTM models, respectively. The experimental results demonstrated that the proposed method achieved higher prediction accuracy than traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Li发布了新的文献求助10
1秒前
2秒前
111完成签到,获得积分10
2秒前
ZOE应助leslie采纳,获得30
3秒前
Xuemin完成签到,获得积分10
4秒前
大道独行发布了新的文献求助10
4秒前
5秒前
Ava应助zhaoyu采纳,获得10
5秒前
飞快的语蕊完成签到,获得积分10
6秒前
慢慢完成签到,获得积分10
6秒前
手抖的粉恐龙完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
cuiyujia发布了新的文献求助10
9秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
10秒前
莫非安然发布了新的文献求助10
10秒前
善良鱼哟完成签到,获得积分10
11秒前
12秒前
务实寄松发布了新的文献求助10
13秒前
陈秀娟发布了新的文献求助10
15秒前
署前街少年完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
歇洛克发布了新的文献求助10
16秒前
16秒前
Orange应助莫非安然采纳,获得30
18秒前
18秒前
20秒前
20秒前
老实的海瑶完成签到,获得积分20
20秒前
rre发布了新的文献求助10
21秒前
小墩墩发布了新的文献求助10
21秒前
铁铁完成签到,获得积分10
22秒前
22秒前
何文艺完成签到,获得积分10
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379