Short-Term Wind Speed Prediction Study Based on Variational Mode Decompositions–Sparrow Search Algorithm–Gated Recurrent Units

麻雀 期限(时间) 算法 模式(计算机接口) 风速 计算机科学 加速 气象学 物理 并行计算 生物 生态学 量子力学 操作系统
作者
Tongrui Yang,Xihao Guo,Guowei Qian
出处
期刊:Processes [MDPI AG]
卷期号:12 (8): 1741-1741
标识
DOI:10.3390/pr12081741
摘要

Improving the accuracy of short-term wind speed predictions is crucial for mitigating the impact on power systems when integrating wind power into an electricity grid. This study developed a hybrid short-term wind speed prediction method, termed VMD–SSA–GRU, by combining variational mode decomposition (VMD) with gated recurrent units (GRUs) and optimizing it using a sparrow search algorithm (SSA). Initially, VMD was used to decompose the wind speed time series into subtime series. After reconstructing these subtime series, a GRU model was employed to establish separate prediction models for each series. Furthermore, an enhanced SSA was proposed to optimize the hyperparameters of the GRU model, which improved the prediction accuracy. Ultimately, the sub-series predictions were aggregated to produce the final wind speed prediction values. The predictive accuracy of this model was validated using the wind speed data measured at a meteorological station near a bridge site. The performance of the VMD–SSA–GRU model was compared with several other hybrid models, including those using wavelet transform, long short-term memory, and other neural networks. Comparably, the RMSE value of the VMD-SSA-GRU model was lower by 25.3%, 60.2%, and 61.7% in comparison to the VMD–SSA–LSTM, VMD–GRU, and VMD–LSTM models, respectively. The experimental results demonstrated that the proposed method achieved higher prediction accuracy than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助lyl采纳,获得10
刚刚
chemj完成签到,获得积分20
1秒前
TWO宝完成签到,获得积分10
1秒前
万能图书馆应助渔婆采纳,获得10
1秒前
llllan发布了新的文献求助30
1秒前
1秒前
充电宝应助畅快访蕊采纳,获得10
2秒前
gao研完成签到,获得积分10
2秒前
Akim应助南鸢采纳,获得10
3秒前
4秒前
梓泽丘墟应助优美丹雪采纳,获得20
4秒前
zink应助Accepted采纳,获得30
5秒前
杨杨完成签到,获得积分10
5秒前
5秒前
5秒前
打打应助chemj采纳,获得10
6秒前
浅是宝贝发布了新的文献求助10
6秒前
ttyj发布了新的文献求助10
6秒前
7秒前
个性的紫菜应助调皮汽车采纳,获得10
7秒前
7秒前
7秒前
南方姑娘关注了科研通微信公众号
8秒前
刘先生发布了新的文献求助10
9秒前
楠瓜发布了新的文献求助50
10秒前
若枫完成签到,获得积分10
10秒前
个性的紫菜应助Han采纳,获得10
11秒前
11秒前
咎星发布了新的文献求助10
11秒前
李健应助zz采纳,获得10
12秒前
陈陈发布了新的文献求助10
13秒前
13秒前
GG完成签到,获得积分10
13秒前
科研小白发布了新的文献求助20
13秒前
14秒前
搜集达人应助qiaokizhang采纳,获得10
16秒前
若枫发布了新的文献求助10
16秒前
汉堡包应助MADKAI采纳,获得10
16秒前
scinature完成签到,获得积分10
17秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042