Short-Term Wind Speed Prediction Study Based on Variational Mode Decompositions–Sparrow Search Algorithm–Gated Recurrent Units

麻雀 期限(时间) 算法 模式(计算机接口) 风速 计算机科学 加速 气象学 物理 并行计算 生物 生态学 量子力学 操作系统
作者
Tongrui Yang,Xihao Guo,Guowei Qian
出处
期刊:Processes [MDPI AG]
卷期号:12 (8): 1741-1741
标识
DOI:10.3390/pr12081741
摘要

Improving the accuracy of short-term wind speed predictions is crucial for mitigating the impact on power systems when integrating wind power into an electricity grid. This study developed a hybrid short-term wind speed prediction method, termed VMD–SSA–GRU, by combining variational mode decomposition (VMD) with gated recurrent units (GRUs) and optimizing it using a sparrow search algorithm (SSA). Initially, VMD was used to decompose the wind speed time series into subtime series. After reconstructing these subtime series, a GRU model was employed to establish separate prediction models for each series. Furthermore, an enhanced SSA was proposed to optimize the hyperparameters of the GRU model, which improved the prediction accuracy. Ultimately, the sub-series predictions were aggregated to produce the final wind speed prediction values. The predictive accuracy of this model was validated using the wind speed data measured at a meteorological station near a bridge site. The performance of the VMD–SSA–GRU model was compared with several other hybrid models, including those using wavelet transform, long short-term memory, and other neural networks. Comparably, the RMSE value of the VMD-SSA-GRU model was lower by 25.3%, 60.2%, and 61.7% in comparison to the VMD–SSA–LSTM, VMD–GRU, and VMD–LSTM models, respectively. The experimental results demonstrated that the proposed method achieved higher prediction accuracy than traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔嚣张发布了新的文献求助10
刚刚
1秒前
无情的聋五完成签到 ,获得积分10
1秒前
liao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
银玥发布了新的文献求助10
2秒前
roy发布了新的文献求助10
3秒前
4秒前
全明星阿杜完成签到,获得积分10
5秒前
yuliuism完成签到,获得积分10
5秒前
6秒前
宣智发布了新的文献求助10
6秒前
7秒前
7秒前
tinale_huang关注了科研通微信公众号
8秒前
超大碗芋泥完成签到,获得积分10
8秒前
unless完成签到,获得积分10
8秒前
在水一方应助花卷采纳,获得10
9秒前
9秒前
彭伟盼发布了新的文献求助10
10秒前
10秒前
jichups完成签到,获得积分10
10秒前
一期一会完成签到,获得积分10
10秒前
12秒前
huadong发布了新的文献求助10
12秒前
CipherSage应助wuxunxun2015采纳,获得10
14秒前
小乖完成签到,获得积分20
15秒前
火柴发布了新的文献求助10
15秒前
顺利中发布了新的文献求助10
16秒前
DG完成签到,获得积分10
16秒前
masterwjc完成签到,获得积分10
16秒前
yznfly应助宣智采纳,获得200
16秒前
18秒前
萧晓完成签到 ,获得积分10
19秒前
19秒前
Frank发布了新的文献求助10
19秒前
19秒前
小确幸发布了新的文献求助10
20秒前
20秒前
舒适的石头完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812