Resilience of weighted networks with dynamical behavior against multi-node removal

弹性(材料科学) 加权网络 脆弱性(计算) 节点(物理) 计算机科学 动力系统理论 动力系统(定义) 维数(图论) 状态空间 心理弹性 数学 复杂网络 拓扑(电路) 统计 物理 组合数学 计算机安全 量子力学 心理治疗师 心理学 热力学
作者
Ziwei Yuan,Changchun Lv,Dongli Duan,Zhiqiang Cai,Shubin Si
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9)
标识
DOI:10.1063/5.0214032
摘要

In many real-world networks, interactions between nodes are weighted to reflect their strength, such as predator–prey interactions in the ecological network and passenger numbers in airline networks. These weighted networks are prone to cascading effects caused by minor perturbations, which can lead to catastrophic outcomes. This vulnerability highlights the importance of studying weighted network resilience to prevent system collapses. However, due to many variables and weight parameters coupled together, predicting the behavior of such a system governed by a multi-dimensional rate equation is challenging. To address this, we propose a dimension reduction technique that simplifies a multi-dimensional system into a one-dimensional state space. We applied this methodology to explore the impact of weights on the resilience of four dynamics whose weights are assigned by three weight assignment methods. The four dynamical systems are the biochemical dynamical system (B), the epidemic dynamical system (E), the regulatory dynamical system (R), and the birth–death dynamical system (BD). The results show that regardless of the weight distribution, for B, the weights are negatively correlated with the activities of the network, while for E, R, and BD, there is a positive correlation between the weights and the activities of the network. Interestingly, for B, R, and BD, the change in the weights of the system has little impact on the resilience of the system. However, for the E system, the greater the weights the more resilient the system. This study not only simplifies the complexity inherent in weighted networks but also enhances our understanding of their resilience and response to perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮梨愁完成签到,获得积分10
刚刚
cj完成签到,获得积分10
刚刚
Akane完成签到,获得积分10
1秒前
小饼一定要上岸完成签到 ,获得积分10
1秒前
虹虹完成签到 ,获得积分10
2秒前
3秒前
3秒前
叶子发布了新的文献求助10
4秒前
4秒前
4秒前
lJH完成签到,获得积分10
6秒前
6秒前
脑洞疼应助Sean采纳,获得10
6秒前
LJY发布了新的文献求助10
8秒前
8秒前
8秒前
probiotics完成签到,获得积分10
8秒前
frigst发布了新的文献求助10
9秒前
啦啦发布了新的文献求助10
9秒前
小宁完成签到,获得积分10
10秒前
knight发布了新的文献求助10
10秒前
潮汐完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
LLN发布了新的文献求助10
12秒前
12秒前
羊白玉发布了新的文献求助10
12秒前
15秒前
清宴发布了新的文献求助10
15秒前
浮游应助七yy采纳,获得10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得30
19秒前
科研通AI5应助灵巧的尔芙采纳,获得10
19秒前
tion66完成签到 ,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
嘟嘟豆806发布了新的文献求助10
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
超级盼海发布了新的文献求助50
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234