Resilience of weighted networks with dynamical behavior against multi-node removal

弹性(材料科学) 加权网络 脆弱性(计算) 节点(物理) 计算机科学 动力系统理论 动力系统(定义) 维数(图论) 状态空间 心理弹性 数学 复杂网络 拓扑(电路) 统计 物理 组合数学 计算机安全 量子力学 心理治疗师 心理学 热力学
作者
Ziwei Yuan,Changchun Lv,Dongli Duan,Zhiqiang Cai,Shubin Si
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9)
标识
DOI:10.1063/5.0214032
摘要

In many real-world networks, interactions between nodes are weighted to reflect their strength, such as predator–prey interactions in the ecological network and passenger numbers in airline networks. These weighted networks are prone to cascading effects caused by minor perturbations, which can lead to catastrophic outcomes. This vulnerability highlights the importance of studying weighted network resilience to prevent system collapses. However, due to many variables and weight parameters coupled together, predicting the behavior of such a system governed by a multi-dimensional rate equation is challenging. To address this, we propose a dimension reduction technique that simplifies a multi-dimensional system into a one-dimensional state space. We applied this methodology to explore the impact of weights on the resilience of four dynamics whose weights are assigned by three weight assignment methods. The four dynamical systems are the biochemical dynamical system (B), the epidemic dynamical system (E), the regulatory dynamical system (R), and the birth–death dynamical system (BD). The results show that regardless of the weight distribution, for B, the weights are negatively correlated with the activities of the network, while for E, R, and BD, there is a positive correlation between the weights and the activities of the network. Interestingly, for B, R, and BD, the change in the weights of the system has little impact on the resilience of the system. However, for the E system, the greater the weights the more resilient the system. This study not only simplifies the complexity inherent in weighted networks but also enhances our understanding of their resilience and response to perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Steven发布了新的文献求助10
1秒前
小马甲应助HY采纳,获得10
2秒前
上官若男应助零一采纳,获得10
2秒前
斯文败类应助淡淡采白采纳,获得10
3秒前
呜呜啦啦完成签到 ,获得积分10
4秒前
大个应助Molly采纳,获得10
4秒前
爱听歌的新烟完成签到,获得积分10
4秒前
犇骉发布了新的文献求助10
4秒前
大美女发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
刘宇完成签到,获得积分20
6秒前
SYLH应助17采纳,获得10
6秒前
顾矜应助丶夜落情泪采纳,获得30
8秒前
9秒前
9秒前
zz完成签到,获得积分20
9秒前
打打应助ZL采纳,获得10
9秒前
9秒前
10秒前
明亮无颜发布了新的文献求助10
11秒前
XWT完成签到,获得积分10
11秒前
12秒前
出门见喜发布了新的文献求助10
12秒前
顾矜应助勤劳的音响采纳,获得10
12秒前
王赞应助机灵的茹妖采纳,获得10
13秒前
Liu完成签到,获得积分10
13秒前
無期发布了新的文献求助20
14秒前
牛马发布了新的文献求助10
14秒前
香蕉觅云应助xmx采纳,获得10
15秒前
XWT发布了新的文献求助10
15秒前
16秒前
JamesPei应助BKEL采纳,获得10
16秒前
17秒前
FashionBoy应助欣慰的乌冬面采纳,获得30
17秒前
17秒前
只只发布了新的文献求助10
18秒前
18秒前
ding应助naturecandy采纳,获得10
19秒前
优雅芷波完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430