Multimodal RU-Net: A Segmentation Network Based on Multimodal Cardiac CMR Images

分割 计算机科学 人工智能 深度学习 图像分割 Sørensen–骰子系数 模式识别(心理学) 特征提取 卷积神经网络 特征(语言学) 计算机视觉 语言学 哲学
作者
Qibin Hong,Changjiang Zhang
标识
DOI:10.1109/ccis59572.2023.10262930
摘要

Cardiac magnetic resonance imaging (CMR) is crucial for the pathological segmentation of the central muscle in the diagnosis of myocardial infarction (MI) patients. The automatic segmentation technology of medical images has achieved significant success with the development of deep learning technology. However, due to the low contrast of the target area edges, irregular lesion areas, and insufficient medical image data, automatic segmentation of myocardial pathology still has great challenges. In this article, we propose an improved RU-Net model called a Multimodal RU- -Net. Used to segment edema and scar areas in multimodal cardiac CMR data. In this network, we use RU-Net as the basic model, embed our proposed multimodal image feature extraction module (MFF) in the encoding path to enhance the extraction of complementary information between different modal images, and add attention modules in the skip connection and encoding path to enhance attention to the regions of interest in the image. The experiment shows that both modules mentioned above effectively improve segmentation accuracy. In addition, we have adopted methods such as data augmentation, deep supervision, and combination loss to further improve segmentation accuracy. We evaluated multimodal RU-Net on the MyoPS2020 challenge dataset and achieved a Dice score of 64.4% in scar segmentation and 70.7% in edema and scar segmentation. We achieved almost equivalent performance to the most advanced single stage segmentation methods on the MyoPS 2020 ranking, and our proposed method outperformed it in the standard deviation of dice scores, The test results are more stable. This indicates that our proposed method is meaningful for automatic segmentation of myocardial pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助cheng采纳,获得10
1秒前
可爱的冷霜完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
老神在在完成签到,获得积分10
4秒前
虚幻黑米完成签到 ,获得积分10
4秒前
lalala_ola发布了新的文献求助10
4秒前
5秒前
拼搏绿柳完成签到,获得积分10
5秒前
孙国庆发布了新的文献求助10
5秒前
乐乐应助xiaokezhang采纳,获得10
6秒前
123完成签到 ,获得积分10
6秒前
oy发布了新的文献求助10
7秒前
wddfz完成签到,获得积分10
7秒前
嘻嘻滑呀发布了新的文献求助10
7秒前
aaaaa完成签到,获得积分10
8秒前
兰兰完成签到,获得积分10
8秒前
owen发布了新的文献求助10
9秒前
9秒前
xiaofeng发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
小小郭完成签到 ,获得积分10
9秒前
9秒前
温水发布了新的文献求助10
10秒前
Fantansy发布了新的文献求助10
11秒前
涵泽发布了新的文献求助10
11秒前
Hello应助Wang采纳,获得10
11秒前
Ran-HT完成签到,获得积分10
12秒前
12秒前
12秒前
warden完成签到,获得积分10
12秒前
秋浱发布了新的文献求助10
12秒前
友好小刺猬完成签到,获得积分10
13秒前
细腻的宫二完成签到,获得积分10
13秒前
顾矜应助虚幻黑米采纳,获得10
14秒前
uulli完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128