Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence

均方误差 人工神经网络 人工智能 可靠性(半导体) 计算机科学 机器学习 感知器 均方根 质量(理念) 平均绝对误差 统计 数学 工程类 电气工程 认识论 物理 哲学 量子力学 功率(物理)
作者
Jiahao Yang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-47060-5
摘要

As an important hydrological parameter, dissolved oxygen (DO) concentration is a well-accepted indicator of water quality. This study deals with introducing and evaluating four novel integrative methods for the prediction of DO. To this end, teaching-learning-based optimization (TLBO), sine cosine algorithm, water cycle algorithm (WCA), and electromagnetic field optimization (EFO) are appointed to train a commonly-used predictive system, namely multi-layer perceptron neural network (MLPNN). The records of a USGS station called Klamath River (Klamath County, Oregon) are used. First, the networks are fed by the data between October 01, 2014, and September 30, 2018. Later, their competency is assessed using the data belonging to the subsequent year (i.e., from October 01, 2018 to September 30, 2019). The reliability of all four models, as well as the superiority of the WCA-MLPNN, was revealed by mean absolute errors (MAEs of 0.9800, 1.1113, 0.9624, and 0.9783) in the training phase. The calculated Pearson correlation coefficients (RPs of 0.8785, 0.8587, 0.8762, and 0.8815) plus root mean square errors (RMSEs of 1.2980, 1.4493, 1.3096, and 1.2903) showed that the EFO-MLPNN and TLBO-MLPNN perform slightly better than WCA-MLPNN in the testing phase. Besides, analyzing the complexity and the optimization time pointed out the EFO-MLPNN as the most efficient tool for predicting the DO. In the end, a comparison with relevant previous literature indicated that the suggested models of this study provide accuracy improvement in machine learning-based DO modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
如意若冰完成签到 ,获得积分10
2秒前
7秒前
10秒前
杨19980625发布了新的文献求助10
14秒前
16秒前
miao应助仂尤采纳,获得20
20秒前
WW发布了新的文献求助10
20秒前
文艺的夏青完成签到,获得积分10
21秒前
vanshaw.vs发布了新的文献求助10
21秒前
深情安青应助张张采纳,获得10
22秒前
孤独孤风完成签到,获得积分10
22秒前
我加小小孙呀应助renhu采纳,获得30
24秒前
24秒前
曹志毅应助可乐采纳,获得10
25秒前
SYX完成签到,获得积分10
27秒前
Aaaaaa瘾完成签到,获得积分10
27秒前
27秒前
29秒前
29秒前
科研混子完成签到,获得积分10
31秒前
郝宝真发布了新的文献求助10
31秒前
31秒前
大个应助杨19980625采纳,获得10
33秒前
37秒前
不吃香菜完成签到,获得积分10
38秒前
39秒前
43秒前
Yynlty发布了新的文献求助10
44秒前
hcmsaobang2001完成签到,获得积分10
45秒前
45秒前
杨宇彤完成签到 ,获得积分20
48秒前
随机子应助超级雅霜采纳,获得10
50秒前
田様应助姜呱呱呱采纳,获得10
51秒前
酷酷的傲白完成签到,获得积分10
53秒前
53秒前
57秒前
李爱国应助乔心采纳,获得10
59秒前
caas_ifr_zp发布了新的文献求助10
59秒前
随机子应助皮灵犀采纳,获得10
59秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165538
求助须知:如何正确求助?哪些是违规求助? 2816691
关于积分的说明 7913299
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388