Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence

均方误差 人工神经网络 人工智能 可靠性(半导体) 计算机科学 机器学习 感知器 均方根 质量(理念) 平均绝对误差 统计 数学 工程类 功率(物理) 物理 量子力学 电气工程 哲学 认识论
作者
Jiahao Yang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-47060-5
摘要

As an important hydrological parameter, dissolved oxygen (DO) concentration is a well-accepted indicator of water quality. This study deals with introducing and evaluating four novel integrative methods for the prediction of DO. To this end, teaching-learning-based optimization (TLBO), sine cosine algorithm, water cycle algorithm (WCA), and electromagnetic field optimization (EFO) are appointed to train a commonly-used predictive system, namely multi-layer perceptron neural network (MLPNN). The records of a USGS station called Klamath River (Klamath County, Oregon) are used. First, the networks are fed by the data between October 01, 2014, and September 30, 2018. Later, their competency is assessed using the data belonging to the subsequent year (i.e., from October 01, 2018 to September 30, 2019). The reliability of all four models, as well as the superiority of the WCA-MLPNN, was revealed by mean absolute errors (MAEs of 0.9800, 1.1113, 0.9624, and 0.9783) in the training phase. The calculated Pearson correlation coefficients (RPs of 0.8785, 0.8587, 0.8762, and 0.8815) plus root mean square errors (RMSEs of 1.2980, 1.4493, 1.3096, and 1.2903) showed that the EFO-MLPNN and TLBO-MLPNN perform slightly better than WCA-MLPNN in the testing phase. Besides, analyzing the complexity and the optimization time pointed out the EFO-MLPNN as the most efficient tool for predicting the DO. In the end, a comparison with relevant previous literature indicated that the suggested models of this study provide accuracy improvement in machine learning-based DO modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
裴佳晨发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
可乐鸡翅完成签到,获得积分10
4秒前
迷路的十四应助小鳄鱼采纳,获得10
4秒前
Zx_1993应助hhhg采纳,获得50
4秒前
将将将发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
苑阿宇完成签到 ,获得积分10
6秒前
6秒前
迪歪歪完成签到,获得积分20
6秒前
300发布了新的文献求助10
6秒前
8秒前
风趣手链发布了新的文献求助10
9秒前
隐形曼青应助可乐鸡翅采纳,获得10
9秒前
SciGPT应助迪歪歪采纳,获得10
9秒前
10秒前
wonderting完成签到,获得积分10
10秒前
将将将完成签到,获得积分10
13秒前
13秒前
Dreamable完成签到,获得积分10
13秒前
岸在海的深处完成签到 ,获得积分0
15秒前
Yuki应助binbinbin采纳,获得10
17秒前
石翎完成签到,获得积分10
18秒前
18秒前
jjr发布了新的文献求助10
18秒前
22秒前
23秒前
深情安青应助Unpredictable采纳,获得10
24秒前
24秒前
研友_8KAzAn发布了新的文献求助10
24秒前
热心雨南完成签到 ,获得积分10
27秒前
温暖如风发布了新的文献求助10
28秒前
danli发布了新的文献求助10
29秒前
29秒前
kingwill发布了新的文献求助150
30秒前
30秒前
zho应助zsy采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655