合成气
催化作用
法拉第效率
电化学
材料科学
产量(工程)
化学工程
Atom(片上系统)
化学
物理化学
有机化学
电极
冶金
计算机科学
工程类
嵌入式系统
作者
Yiqun Chen,Minqi Xia,Zhou Cao,Yan Zhang,Changkai Zhou,Fengfei Xu,Biao Feng,Xizhang Wang,Lijun Yang,Zheng Hu,Qiang Wu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-11-02
卷期号:17 (21): 22095-22105
被引量:16
标识
DOI:10.1021/acsnano.3c09102
摘要
Renewable-driven electrochemical CO2 reduction reaction (CO2RR) to syngas is an encouraging alternative strategy to traditional fossil fuel-based syngas production, and the development of industrial-level electrocatalysts is vital. Herein, based on theoretical optimization of metal species, hierarchical CoxNi1-x-N-C dual single-atom catalyst (DSAC) with individual NiN4 (CO preferential) and CoN4 (H2 preferential) moieties was constructed by a two-step pyrolysis route. The Co0.5Ni0.5-N-C exhibits a stable CO Faradaic efficiency of 50 ± 5% and an industrial-level current density of 101-365 mA cm-2 in an ultrawide potential window of -0.5 to -1.1 V. The CO/H2 ratio of syngas can be conveniently tuned by regulating the Co/Ni ratio. The coupled effect of NiN4 and CoN4 moieties under a local high-pH microenvironment is responsible for the regulation of the CO/H2 selectivity and yield for the CoxNi1-x-N-C catalyst, which is not present in the mixed Co-N-C and Ni-N-C catalyst. This study provides a promising DSAC strategy for achieving industrial-level syngas production via CO2RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI