Accuracy of generative artificial intelligence models in differential diagnoses of familial Mediterranean fever and deficiency of Interleukin-1 receptor antagonist

家族性地中海热 医学诊断 鉴别诊断 白细胞介素1受体拮抗剂 医学 疾病 生物信息学 重症监护医学 内科学 免疫学 病理 敌手 受体拮抗剂 受体 生物
作者
Joshua Pillai,Kathryn Pillai
出处
期刊:Journal of translational autoimmunity [Elsevier BV]
卷期号:7: 100213-100213 被引量:6
标识
DOI:10.1016/j.jtauto.2023.100213
摘要

With the increasing development of artificial intelligence, large language models (LLMs) have been utilized to solve problems in natural language processing tasks. More recently, LLMs have shown unique potential in numerous applications within medicine but have been particularly investigated for their ability in clinical reasoning. Although the diagnostic accuracy of LLMs in forming differential diagnoses has been reviewed in general internal medicine applications, much is unknown in autoinflammatory disorders. From the nature of autoinflammatory diseases, forming a differential diagnosis is challenging due to the overlapping symptoms between disorders and even more difficult without genetic screening. In this work, the diagnostic accuracy of the Generative Pre-Trained Transformer Model-4 (GPT-4), GPT-3.5, and Large Language Model Meta AI (LLaMa) were evaluated in clinical vignettes of Deficiency of Interleukin-1 Receptor Antagonist (DIRA) and Familial Mediterranean Fever (FMF). We then compared these models to a control group including one internal medicine physician. It was found that GPT-4 did not significantly differ in correctly identifying DIRA and FMF patients compared to the internist. However, the physician maintained a significantly higher accuracy than GPT-3.5 and LLaMa 2 for either disease. Overall, we explore and discuss the unique potential of LLMs in diagnostics for autoimmune diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dalin完成签到,获得积分10
刚刚
牛肉面完成签到,获得积分10
1秒前
领导范儿应助plumcute采纳,获得10
1秒前
化学小学生完成签到,获得积分10
1秒前
2秒前
Gaoyang完成签到,获得积分10
2秒前
大壮完成签到,获得积分10
2秒前
顾矜应助hiimcwn采纳,获得10
2秒前
2秒前
bkagyin应助runnyday采纳,获得30
2秒前
pcwang完成签到,获得积分10
3秒前
Wayne_Sun完成签到,获得积分10
3秒前
小张z完成签到,获得积分10
3秒前
无奈敏完成签到,获得积分10
4秒前
伶俐的不尤完成签到,获得积分10
4秒前
子车立轩完成签到,获得积分10
5秒前
四叶草完成签到,获得积分10
5秒前
琳琳完成签到,获得积分10
5秒前
66完成签到,获得积分10
5秒前
6秒前
舒适亦凝发布了新的文献求助10
6秒前
6秒前
Lucy完成签到 ,获得积分10
6秒前
幸运花花关注了科研通微信公众号
7秒前
情怀应助香豆素采纳,获得10
7秒前
赵zhao完成签到,获得积分10
8秒前
来世飞鸟完成签到,获得积分10
8秒前
HHHAN完成签到,获得积分10
8秒前
8秒前
hjx完成签到,获得积分10
8秒前
周亭完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
4123发布了新的文献求助10
10秒前
娇气的春天完成签到 ,获得积分10
11秒前
Wang发布了新的文献求助10
11秒前
顺利的傲云完成签到,获得积分10
11秒前
EdwardKING完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733818
求助须知:如何正确求助?哪些是违规求助? 3278017
关于积分的说明 10006622
捐赠科研通 2994199
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780744
科研通“疑难数据库(出版商)”最低求助积分说明 749004