DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction

计算机科学 交互信息 药物发现 亲缘关系 人工智能 马修斯相关系数 过程(计算) 代表(政治) 图形 机器学习 数据挖掘 模式识别(心理学) 化学 支持向量机 生物信息学 数学 理论计算机科学 生物 法学 操作系统 政治学 立体化学 统计 政治
作者
Yuemin Zhu,Chuyu Wang,Naifeng Wen,Junjie Wang,Chuyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (9) 被引量:3
标识
DOI:10.1093/bioinformatics/btad560
摘要

Abstract Motivation Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to predict affinities, some of which only utilize original sequence information or complex structures, but the effective combination of various information and protein-binding pockets have not been fully mined. Therefore, a new method that integrates available key information is urgently needed to predict DTA and accelerate the drug discovery process. Results In this study, we propose a novel deep learning-based predictor termed DataDTA to estimate the affinities of drug–target pairs. DataDTA utilizes descriptors of predicted pockets and sequences of proteins, as well as low-dimensional molecular features and SMILES strings of compounds as inputs. Specifically, the pockets were predicted from the three-dimensional structure of proteins and their descriptors were extracted as the partial input features for DTA prediction. The molecular representation of compounds based on algebraic graph features was collected to supplement the input information of targets. Furthermore, to ensure effective learning of multiscale interaction features, a dual-interaction aggregation neural network strategy was developed. DataDTA was compared with state-of-the-art methods on different datasets, and the results showed that DataDTA is a reliable prediction tool for affinities estimation. Specifically, the concordance index (CI) of DataDTA is 0.806 and the Pearson correlation coefficient (R) value is 0.814 on the test dataset, which is higher than other methods. Availability and implementation The codes and datasets of DataDTA are available at https://github.com/YanZhu06/DataDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
xiaolei001应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
呵呵应助科研通管家采纳,获得10
1秒前
文静新烟应助科研通管家采纳,获得50
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
xiaolei001应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
hoijuon应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
那时花开应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
仇悦完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
搞怪的哈密瓜完成签到,获得积分10
2秒前
咄咄完成签到 ,获得积分10
4秒前
5秒前
独特乘风完成签到,获得积分10
5秒前
Gloria完成签到,获得积分10
6秒前
6秒前
复杂千亦完成签到,获得积分10
7秒前
来弄完成签到,获得积分10
7秒前
小付完成签到,获得积分10
8秒前
缓冲中完成签到 ,获得积分10
8秒前
平淡纸飞机完成签到 ,获得积分10
9秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378995
求助须知:如何正确求助?哪些是违规求助? 4503456
关于积分的说明 14015772
捐赠科研通 4412144
什么是DOI,文献DOI怎么找? 2423708
邀请新用户注册赠送积分活动 1416600
关于科研通互助平台的介绍 1394111