亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction

计算机科学 交互信息 药物发现 亲缘关系 人工智能 马修斯相关系数 过程(计算) 代表(政治) 图形 机器学习 数据挖掘 模式识别(心理学) 化学 支持向量机 生物信息学 数学 理论计算机科学 生物 法学 操作系统 政治学 立体化学 统计 政治
作者
Yuemin Zhu,Chuyu Wang,Naifeng Wen,Junjie Wang,Chuyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (9) 被引量:3
标识
DOI:10.1093/bioinformatics/btad560
摘要

Abstract Motivation Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to predict affinities, some of which only utilize original sequence information or complex structures, but the effective combination of various information and protein-binding pockets have not been fully mined. Therefore, a new method that integrates available key information is urgently needed to predict DTA and accelerate the drug discovery process. Results In this study, we propose a novel deep learning-based predictor termed DataDTA to estimate the affinities of drug–target pairs. DataDTA utilizes descriptors of predicted pockets and sequences of proteins, as well as low-dimensional molecular features and SMILES strings of compounds as inputs. Specifically, the pockets were predicted from the three-dimensional structure of proteins and their descriptors were extracted as the partial input features for DTA prediction. The molecular representation of compounds based on algebraic graph features was collected to supplement the input information of targets. Furthermore, to ensure effective learning of multiscale interaction features, a dual-interaction aggregation neural network strategy was developed. DataDTA was compared with state-of-the-art methods on different datasets, and the results showed that DataDTA is a reliable prediction tool for affinities estimation. Specifically, the concordance index (CI) of DataDTA is 0.806 and the Pearson correlation coefficient (R) value is 0.814 on the test dataset, which is higher than other methods. Availability and implementation The codes and datasets of DataDTA are available at https://github.com/YanZhu06/DataDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鬼完成签到,获得积分10
21秒前
22秒前
小鬼发布了新的文献求助30
27秒前
甲氨蝶呤完成签到,获得积分10
1分钟前
1分钟前
魏白晴完成签到,获得积分10
1分钟前
1分钟前
Criminology34举报量子星尘求助涉嫌违规
1分钟前
球球子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
刘辰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
小东西发布了新的文献求助200
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
朴素海亦完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Akim应助冷酷跳跳糖采纳,获得10
6分钟前
6分钟前
繁星完成签到 ,获得积分10
6分钟前
从来都不会放弃zr完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346693
求助须知:如何正确求助?哪些是违规求助? 4481136
关于积分的说明 13947312
捐赠科研通 4379095
什么是DOI,文献DOI怎么找? 2406155
邀请新用户注册赠送积分活动 1398731
关于科研通互助平台的介绍 1371611