DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction

计算机科学 交互信息 药物发现 亲缘关系 人工智能 马修斯相关系数 过程(计算) 代表(政治) 图形 机器学习 数据挖掘 模式识别(心理学) 化学 支持向量机 生物信息学 数学 理论计算机科学 生物 法学 操作系统 政治学 立体化学 统计 政治
作者
Yuemin Zhu,Chuyu Wang,Naifeng Wen,Junjie Wang,Chuyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (9) 被引量:3
标识
DOI:10.1093/bioinformatics/btad560
摘要

Abstract Motivation Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to predict affinities, some of which only utilize original sequence information or complex structures, but the effective combination of various information and protein-binding pockets have not been fully mined. Therefore, a new method that integrates available key information is urgently needed to predict DTA and accelerate the drug discovery process. Results In this study, we propose a novel deep learning-based predictor termed DataDTA to estimate the affinities of drug–target pairs. DataDTA utilizes descriptors of predicted pockets and sequences of proteins, as well as low-dimensional molecular features and SMILES strings of compounds as inputs. Specifically, the pockets were predicted from the three-dimensional structure of proteins and their descriptors were extracted as the partial input features for DTA prediction. The molecular representation of compounds based on algebraic graph features was collected to supplement the input information of targets. Furthermore, to ensure effective learning of multiscale interaction features, a dual-interaction aggregation neural network strategy was developed. DataDTA was compared with state-of-the-art methods on different datasets, and the results showed that DataDTA is a reliable prediction tool for affinities estimation. Specifically, the concordance index (CI) of DataDTA is 0.806 and the Pearson correlation coefficient (R) value is 0.814 on the test dataset, which is higher than other methods. Availability and implementation The codes and datasets of DataDTA are available at https://github.com/YanZhu06/DataDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan发布了新的文献求助10
刚刚
田様应助卡卡采纳,获得10
1秒前
Zezezee发布了新的文献求助10
3秒前
复杂的问玉完成签到,获得积分20
4秒前
5秒前
5秒前
睡睡完成签到,获得积分10
5秒前
6秒前
7秒前
所所应助饕餮采纳,获得10
7秒前
平淡小凝发布了新的文献求助10
7秒前
nihaoxiaoai完成签到,获得积分10
8秒前
完美世界应助英俊的汉堡采纳,获得10
8秒前
爱静静应助hehe采纳,获得10
9秒前
九城发布了新的文献求助20
9秒前
斯文败类应助高君奇采纳,获得10
9秒前
小二郎应助特兰克斯采纳,获得10
9秒前
mojomars发布了新的文献求助10
9秒前
吃嘛嘛香完成签到,获得积分10
9秒前
wqy发布了新的文献求助10
10秒前
天天快乐应助新的心跳采纳,获得10
10秒前
Orange应助有益采纳,获得10
10秒前
12秒前
爆米花应助marinemiao采纳,获得10
12秒前
12秒前
招财不肥发布了新的文献求助10
13秒前
网安真难T_T完成签到,获得积分10
13秒前
大土豆子完成签到,获得积分10
14秒前
14秒前
甜甜醉波发布了新的文献求助10
15秒前
CodeCraft应助jy采纳,获得10
15秒前
领导范儿应助睡睡采纳,获得10
15秒前
哈哈完成签到 ,获得积分10
16秒前
Holleay123发布了新的文献求助10
17秒前
17秒前
18秒前
苏卿应助kento采纳,获得100
18秒前
小马甲应助满意之玉采纳,获得10
18秒前
19秒前
Jing完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808