DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction

计算机科学 交互信息 药物发现 亲缘关系 人工智能 马修斯相关系数 过程(计算) 代表(政治) 图形 机器学习 数据挖掘 模式识别(心理学) 化学 支持向量机 生物信息学 数学 理论计算机科学 生物 法学 操作系统 政治学 立体化学 统计 政治
作者
Yuemin Zhu,Chuyu Wang,Naifeng Wen,Junjie Wang,Chuyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (9) 被引量:3
标识
DOI:10.1093/bioinformatics/btad560
摘要

Abstract Motivation Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to predict affinities, some of which only utilize original sequence information or complex structures, but the effective combination of various information and protein-binding pockets have not been fully mined. Therefore, a new method that integrates available key information is urgently needed to predict DTA and accelerate the drug discovery process. Results In this study, we propose a novel deep learning-based predictor termed DataDTA to estimate the affinities of drug–target pairs. DataDTA utilizes descriptors of predicted pockets and sequences of proteins, as well as low-dimensional molecular features and SMILES strings of compounds as inputs. Specifically, the pockets were predicted from the three-dimensional structure of proteins and their descriptors were extracted as the partial input features for DTA prediction. The molecular representation of compounds based on algebraic graph features was collected to supplement the input information of targets. Furthermore, to ensure effective learning of multiscale interaction features, a dual-interaction aggregation neural network strategy was developed. DataDTA was compared with state-of-the-art methods on different datasets, and the results showed that DataDTA is a reliable prediction tool for affinities estimation. Specifically, the concordance index (CI) of DataDTA is 0.806 and the Pearson correlation coefficient (R) value is 0.814 on the test dataset, which is higher than other methods. Availability and implementation The codes and datasets of DataDTA are available at https://github.com/YanZhu06/DataDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助张贵川采纳,获得10
刚刚
LL发布了新的文献求助10
刚刚
1秒前
yafei完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
飞絮发布了新的文献求助10
2秒前
2秒前
流光发布了新的文献求助10
2秒前
GSQ完成签到,获得积分10
3秒前
4秒前
爆米花应助行毅文采纳,获得10
4秒前
4秒前
4秒前
陶醉凝丝发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
天上人间完成签到,获得积分20
7秒前
天才都这样完成签到,获得积分10
7秒前
Jiali完成签到,获得积分10
7秒前
8秒前
壮观定帮完成签到,获得积分10
9秒前
9秒前
9秒前
haha发布了新的文献求助10
9秒前
NIA发布了新的文献求助10
9秒前
10秒前
李爱国应助暮色采纳,获得10
10秒前
10秒前
李牧发布了新的文献求助10
10秒前
11秒前
Kristina完成签到,获得积分10
12秒前
Cynthia发布了新的文献求助10
13秒前
13秒前
伊雪儿发布了新的文献求助10
13秒前
飞絮完成签到,获得积分10
13秒前
朱先生完成签到 ,获得积分10
13秒前
标致凝莲完成签到,获得积分10
14秒前
Marita完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351