DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction

计算机科学 交互信息 药物发现 亲缘关系 人工智能 马修斯相关系数 过程(计算) 代表(政治) 图形 机器学习 数据挖掘 模式识别(心理学) 化学 支持向量机 生物信息学 数学 理论计算机科学 生物 法学 操作系统 政治学 立体化学 统计 政治
作者
Yuemin Zhu,Chuyu Wang,Naifeng Wen,Junjie Wang,Chuyu Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (9) 被引量:3
标识
DOI:10.1093/bioinformatics/btad560
摘要

Abstract Motivation Accurate prediction of drug–target binding affinity (DTA) is crucial for drug discovery. The increase in the publication of large-scale DTA datasets enables the development of various computational methods for DTA prediction. Numerous deep learning-based methods have been proposed to predict affinities, some of which only utilize original sequence information or complex structures, but the effective combination of various information and protein-binding pockets have not been fully mined. Therefore, a new method that integrates available key information is urgently needed to predict DTA and accelerate the drug discovery process. Results In this study, we propose a novel deep learning-based predictor termed DataDTA to estimate the affinities of drug–target pairs. DataDTA utilizes descriptors of predicted pockets and sequences of proteins, as well as low-dimensional molecular features and SMILES strings of compounds as inputs. Specifically, the pockets were predicted from the three-dimensional structure of proteins and their descriptors were extracted as the partial input features for DTA prediction. The molecular representation of compounds based on algebraic graph features was collected to supplement the input information of targets. Furthermore, to ensure effective learning of multiscale interaction features, a dual-interaction aggregation neural network strategy was developed. DataDTA was compared with state-of-the-art methods on different datasets, and the results showed that DataDTA is a reliable prediction tool for affinities estimation. Specifically, the concordance index (CI) of DataDTA is 0.806 and the Pearson correlation coefficient (R) value is 0.814 on the test dataset, which is higher than other methods. Availability and implementation The codes and datasets of DataDTA are available at https://github.com/YanZhu06/DataDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗尧发布了新的文献求助30
刚刚
尕雨茼学完成签到 ,获得积分10
1秒前
SciGPT应助纯真的晓啸采纳,获得10
1秒前
2秒前
2秒前
爆米花应助安静季节采纳,获得10
2秒前
hahajiang完成签到,获得积分10
2秒前
astral完成签到,获得积分10
2秒前
3秒前
3秒前
香蕉觅云应助PPRer采纳,获得10
4秒前
4秒前
4秒前
香蕉觅云应助咚巴拉采纳,获得10
4秒前
天天快乐应助Anima采纳,获得10
4秒前
4秒前
6秒前
金磊发布了新的文献求助10
7秒前
7秒前
浅呀呀呀发布了新的文献求助10
7秒前
wuyanzu完成签到,获得积分20
7秒前
栗子发布了新的文献求助10
8秒前
8秒前
8秒前
11秒前
Lars汉堡发布了新的文献求助10
11秒前
11秒前
susu发布了新的文献求助10
11秒前
GGbon发布了新的文献求助10
11秒前
所所应助大胆的雪一采纳,获得10
12秒前
mogen发布了新的文献求助10
12秒前
14秒前
深情安青应助哦豁拐咯采纳,获得10
14秒前
15秒前
土豪的晓绿完成签到,获得积分10
15秒前
希望天下0贩的0应助汪金采纳,获得10
15秒前
16秒前
三度和弦发布了新的文献求助10
16秒前
16秒前
Zenobia发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288713
求助须知:如何正确求助?哪些是违规求助? 4440504
关于积分的说明 13824786
捐赠科研通 4322792
什么是DOI,文献DOI怎么找? 2372749
邀请新用户注册赠送积分活动 1368214
关于科研通互助平台的介绍 1332093