Transformer-Based Masked Autoencoder With Contrastive Loss for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 自编码 模式识别(心理学) 上下文图像分类 遥感 计算机视觉 图像(数学) 地质学 人工神经网络
作者
Xianghai Cao,Haifeng Lin,Shuaixu Guo,Tao Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:26
标识
DOI:10.1109/tgrs.2023.3315678
摘要

Recent years, in order to solve the problem of lacking accurately labeled hyperspectral image data, self-supervised learning has become an effective method for hyperspectral image classification. The core idea of self-supervised learning is to define a pretext task which helps to train the model without the labels. By exploiting both the information of the labeled and unlabeled samples, self-supervised learning shows enormous potential to handle many different tasks in the field of hyperspectral image processing. Among the vast amount of self-supervised methods, contrastive learning and masked autoencoder are well known because of their impressive performance. This article proposes a Transformer based masked autoencoder using contrastive learning (TMAC), which tries to combine these two methods and improve the performance further. TMAC has two branches, the first branch has an encoder-decoders structure, it has an encoder to capture the latent image representation of the masked hyperspectral image and two decoders where the pixel decoder aims to reconstruct the hyperspectral image at pixel-level and the feature decoder is built to extract the high-level feature of the reconstructed image. The second branch consists of a momentum encoder and a standard projection head to embed the image into the feature space. Then, by combining the output of feature decoder and the embedding vectors via contrastive learning to enhance the model's classification performance. According to the experiments, our model shows powerful feature extraction capability and gets outstanding results on hyperspectral image datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助一口蒜苗采纳,获得15
刚刚
任性的小C发布了新的文献求助10
1秒前
1秒前
月月鸟发布了新的文献求助10
2秒前
2秒前
奋斗发布了新的文献求助10
2秒前
2秒前
着急的猴完成签到,获得积分10
2秒前
2秒前
烟花应助幸福的雪枫采纳,获得10
3秒前
3秒前
4秒前
雪山飞龙发布了新的文献求助10
4秒前
5秒前
5秒前
媛小媛啊完成签到,获得积分20
5秒前
5秒前
7秒前
7秒前
yyl发布了新的文献求助10
7秒前
so完成签到,获得积分10
7秒前
唐鹿发布了新的文献求助10
7秒前
7秒前
daniel发布了新的文献求助10
8秒前
良辰完成签到,获得积分10
8秒前
9秒前
9秒前
共享精神应助香蕉秋蝶采纳,获得10
9秒前
YeMa发布了新的文献求助10
9秒前
李爱国应助月月鸟采纳,获得10
10秒前
奋斗完成签到,获得积分20
10秒前
so发布了新的文献求助10
10秒前
eyrefa发布了新的文献求助10
11秒前
张沐金发布了新的文献求助10
11秒前
白藏主发布了新的文献求助10
12秒前
yu完成签到,获得积分10
12秒前
华仔应助吃不了八碗采纳,获得10
12秒前
orixero应助yyl采纳,获得10
13秒前
小泥娃发布了新的文献求助10
13秒前
范范完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096