Transformer-Based Masked Autoencoder With Contrastive Loss for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 自编码 模式识别(心理学) 特征学习 特征提取 像素 特征(语言学) 编码器 特征向量 计算机视觉 深度学习 语言学 操作系统 哲学
作者
Xianghai Cao,Haifeng Lin,Shuaixu Guo,Tao Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:16
标识
DOI:10.1109/tgrs.2023.3315678
摘要

Recent years, in order to solve the problem of lacking accurately labeled hyperspectral image data, self-supervised learning has become an effective method for hyperspectral image classification. The core idea of self-supervised learning is to define a pretext task which helps to train the model without the labels. By exploiting both the information of the labeled and unlabeled samples, self-supervised learning shows enormous potential to handle many different tasks in the field of hyperspectral image processing. Among the vast amount of self-supervised methods, contrastive learning and masked autoencoder are well known because of their impressive performance. This article proposes a Transformer based masked autoencoder using contrastive learning (TMAC), which tries to combine these two methods and improve the performance further. TMAC has two branches, the first branch has an encoder-decoders structure, it has an encoder to capture the latent image representation of the masked hyperspectral image and two decoders where the pixel decoder aims to reconstruct the hyperspectral image at pixel-level and the feature decoder is built to extract the high-level feature of the reconstructed image. The second branch consists of a momentum encoder and a standard projection head to embed the image into the feature space. Then, by combining the output of feature decoder and the embedding vectors via contrastive learning to enhance the model’s classification performance. According to the experiments, our model shows powerful feature extraction capability and gets outstanding results on hyperspectral image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨琴完成签到,获得积分10
1秒前
Lucas应助朴实的绿兰采纳,获得10
1秒前
后周寒生发布了新的文献求助10
1秒前
1秒前
hwq123完成签到,获得积分10
2秒前
Jasper应助Ying采纳,获得20
2秒前
搜集达人应助月牙弯弯采纳,获得10
3秒前
思源应助qq采纳,获得10
4秒前
丘比特应助快乐星球采纳,获得10
4秒前
小凯应助夕瑶采纳,获得10
8秒前
9秒前
聪明乐巧完成签到,获得积分10
10秒前
星希完成签到 ,获得积分10
10秒前
Gyrfalcon完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助哈哈采纳,获得10
12秒前
SciGPT应助执着采纳,获得10
13秒前
loin完成签到,获得积分10
13秒前
阳光的道消完成签到,获得积分10
14秒前
ladette发布了新的文献求助10
15秒前
le完成签到 ,获得积分10
16秒前
Ying完成签到,获得积分10
16秒前
16秒前
18秒前
hahaha完成签到,获得积分10
19秒前
19秒前
灵舒完成签到,获得积分10
21秒前
大方的火龙果完成签到 ,获得积分10
22秒前
阿姊完成签到 ,获得积分10
22秒前
强壮的人发布了新的文献求助10
23秒前
xiaobai发布了新的文献求助10
23秒前
24秒前
Kikisong完成签到,获得积分10
24秒前
黑白完成签到 ,获得积分10
25秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
化学小学生完成签到,获得积分10
26秒前
迷路的沧海完成签到,获得积分10
26秒前
HEIKU应助科研通管家采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175