Transformer-Based Masked Autoencoder With Contrastive Loss for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 自编码 模式识别(心理学) 上下文图像分类 遥感 计算机视觉 图像(数学) 地质学 人工神经网络
作者
Xianghai Cao,Haifeng Lin,Shuaixu Guo,Tao Xiong,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:26
标识
DOI:10.1109/tgrs.2023.3315678
摘要

Recent years, in order to solve the problem of lacking accurately labeled hyperspectral image data, self-supervised learning has become an effective method for hyperspectral image classification. The core idea of self-supervised learning is to define a pretext task which helps to train the model without the labels. By exploiting both the information of the labeled and unlabeled samples, self-supervised learning shows enormous potential to handle many different tasks in the field of hyperspectral image processing. Among the vast amount of self-supervised methods, contrastive learning and masked autoencoder are well known because of their impressive performance. This article proposes a Transformer based masked autoencoder using contrastive learning (TMAC), which tries to combine these two methods and improve the performance further. TMAC has two branches, the first branch has an encoder-decoders structure, it has an encoder to capture the latent image representation of the masked hyperspectral image and two decoders where the pixel decoder aims to reconstruct the hyperspectral image at pixel-level and the feature decoder is built to extract the high-level feature of the reconstructed image. The second branch consists of a momentum encoder and a standard projection head to embed the image into the feature space. Then, by combining the output of feature decoder and the embedding vectors via contrastive learning to enhance the model's classification performance. According to the experiments, our model shows powerful feature extraction capability and gets outstanding results on hyperspectral image datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Paddy发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
KT发布了新的文献求助10
1秒前
2秒前
2秒前
丽莫莫完成签到,获得积分10
3秒前
3秒前
zsq完成签到 ,获得积分20
3秒前
秋刀鱼完成签到,获得积分10
3秒前
4秒前
PPP发布了新的文献求助30
4秒前
6666发布了新的文献求助10
5秒前
饕餮发布了新的文献求助10
5秒前
小杨发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
清欢发布了新的文献求助10
5秒前
zlxxxx发布了新的文献求助10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
紫气东来应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
加油呀应助科研通管家采纳,获得10
6秒前
mm应助科研通管家采纳,获得10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得80
6秒前
小鱼应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
简单一兰完成签到,获得积分10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
niNe3YUE应助科研通管家采纳,获得10
7秒前
xiaohai1987完成签到,获得积分10
7秒前
Jared应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396