Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:1
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颢懿完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
ljc完成签到 ,获得积分10
6秒前
Java完成签到,获得积分10
10秒前
12秒前
鲤鱼安青完成签到 ,获得积分10
14秒前
14秒前
dollarpuff完成签到 ,获得积分10
17秒前
17秒前
mmmmmMM完成签到,获得积分10
24秒前
luckweb完成签到,获得积分10
30秒前
猫的毛完成签到 ,获得积分10
31秒前
nicky完成签到 ,获得积分10
32秒前
麦子完成签到 ,获得积分10
33秒前
33秒前
Wilson完成签到 ,获得积分10
34秒前
luckweb发布了新的文献求助10
34秒前
34秒前
38秒前
41秒前
传奇3应助wujiwuhui采纳,获得10
43秒前
开心寄松完成签到,获得积分10
45秒前
北宫完成签到 ,获得积分10
45秒前
wansida完成签到,获得积分10
49秒前
QXS完成签到 ,获得积分10
49秒前
50秒前
菠萝完成签到 ,获得积分10
50秒前
领导范儿应助Villanellel采纳,获得10
54秒前
wintersss完成签到,获得积分10
54秒前
尹尹发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
57秒前
zzzzzz完成签到 ,获得积分10
1分钟前
坦率的枕头完成签到,获得积分10
1分钟前
XS_QI完成签到 ,获得积分10
1分钟前
与共发布了新的文献求助10
1分钟前
苑阿宇完成签到 ,获得积分10
1分钟前
yck1027完成签到,获得积分10
1分钟前
fatcat完成签到,获得积分10
1分钟前
斯文败类应助Camus采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022