亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:1
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平淡如天完成签到,获得积分10
2秒前
4秒前
光源处发布了新的文献求助10
7秒前
7秒前
温暖笑容发布了新的文献求助10
11秒前
lsm发布了新的文献求助10
12秒前
17秒前
lsm完成签到,获得积分10
20秒前
20秒前
Dr.Tang完成签到 ,获得积分10
24秒前
搜集达人应助WATeam采纳,获得10
28秒前
斯文的苡完成签到,获得积分10
30秒前
jyy完成签到,获得积分10
30秒前
tta发布了新的文献求助10
32秒前
头孢西丁完成签到 ,获得积分10
33秒前
willlee完成签到 ,获得积分10
33秒前
34秒前
Cain驳回了顾矜应助
36秒前
HCB1发布了新的文献求助10
39秒前
ceeray23发布了新的文献求助20
43秒前
43秒前
Akim应助拼搏的二哈采纳,获得10
51秒前
54秒前
hob完成签到,获得积分10
54秒前
凉的白开完成签到,获得积分10
55秒前
weixiaosi完成签到 ,获得积分10
58秒前
WATeam发布了新的文献求助10
59秒前
1分钟前
leave完成签到 ,获得积分10
1分钟前
明理晓霜发布了新的文献求助10
1分钟前
1分钟前
可爱的函函应助酷酷白萱采纳,获得10
1分钟前
酷酷白萱完成签到,获得积分20
1分钟前
1分钟前
无花果应助ceeray23采纳,获得20
1分钟前
棣棣完成签到,获得积分10
1分钟前
00完成签到,获得积分10
1分钟前
c2发布了新的文献求助10
1分钟前
小汤完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532068
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216