Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:1
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
A梦完成签到,获得积分20
2秒前
Ff发布了新的文献求助10
3秒前
4秒前
Owen应助Harry采纳,获得10
4秒前
qqq发布了新的文献求助10
4秒前
5秒前
我没那么郝完成签到,获得积分10
5秒前
善学以致用应助海豹采纳,获得10
5秒前
如意安青完成签到,获得积分10
5秒前
5秒前
王大锤发布了新的文献求助10
5秒前
6秒前
6秒前
CIOOICO1发布了新的文献求助10
7秒前
负责雨灵完成签到,获得积分10
8秒前
爆米花应助飞飞飞采纳,获得10
8秒前
Planetary完成签到,获得积分10
10秒前
罗白翠发布了新的文献求助10
10秒前
10秒前
外向烤鸡发布了新的文献求助10
11秒前
在英快尔完成签到,获得积分10
11秒前
默默的妙竹完成签到 ,获得积分10
11秒前
红色流星完成签到 ,获得积分10
11秒前
hjyylab应助哒哒哒采纳,获得10
11秒前
领导范儿应助如意安青采纳,获得10
12秒前
orixero应助忧郁的宝川采纳,获得10
13秒前
14秒前
dzy完成签到,获得积分10
14秒前
Owen应助cherry采纳,获得10
14秒前
tc完成签到,获得积分20
14秒前
Harry完成签到,获得积分20
14秒前
17秒前
汉堡包应助笑点低亿先采纳,获得10
17秒前
西瓜完成签到,获得积分10
17秒前
boyerdeng完成签到,获得积分20
18秒前
王清完成签到,获得积分10
18秒前
18秒前
轩辕十四发布了新的文献求助30
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970