已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:1
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助lina采纳,获得20
2秒前
2秒前
3秒前
JamesPei应助山奈采纳,获得10
5秒前
华仔应助hyhyhyhy采纳,获得10
5秒前
Lee完成签到,获得积分20
6秒前
6秒前
可爱的函函应助苏和杨采纳,获得10
6秒前
风车发布了新的文献求助10
7秒前
7秒前
7秒前
RRRZZ完成签到 ,获得积分10
10秒前
风车完成签到,获得积分10
12秒前
li完成签到 ,获得积分10
13秒前
在水一方应助Transition采纳,获得10
16秒前
Rewi_Zhang完成签到,获得积分10
19秒前
20秒前
小马甲应助小郭不洗锅采纳,获得10
23秒前
豆包完成签到,获得积分10
23秒前
如果发布了新的文献求助10
23秒前
24秒前
烂漫酬海发布了新的文献求助10
27秒前
28秒前
宇冠琉璃完成签到,获得积分10
29秒前
发一篇sci完成签到 ,获得积分10
30秒前
子非鱼发布了新的文献求助10
30秒前
小郭不洗锅完成签到,获得积分10
32秒前
兼听则明完成签到,获得积分10
32秒前
传奇3应助新的旅程采纳,获得10
33秒前
33秒前
情怀应助Jason采纳,获得10
34秒前
JamesPei应助123采纳,获得10
35秒前
sjs11完成签到,获得积分10
36秒前
loen完成签到,获得积分10
39秒前
一直向前发布了新的文献求助10
41秒前
效果好那你那边vv完成签到,获得积分10
43秒前
如果完成签到,获得积分10
44秒前
Arui发布了新的文献求助10
44秒前
45秒前
鱼鱼鱼完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989832
求助须知:如何正确求助?哪些是违规求助? 3531967
关于积分的说明 11255613
捐赠科研通 3270725
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809208