Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:3
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CBWKEYANTONG123完成签到,获得积分10
1秒前
太行行者完成签到,获得积分10
1秒前
吴帅发布了新的文献求助10
2秒前
bonnwangyong完成签到,获得积分10
2秒前
汉堡包应助if奖采纳,获得10
2秒前
彭于晏应助Twilight采纳,获得10
3秒前
薛天抒发布了新的文献求助10
3秒前
NexusExplorer应助长孙归尘采纳,获得30
3秒前
清脆水卉发布了新的文献求助10
4秒前
4秒前
HUYAOWEI完成签到,获得积分10
4秒前
1234完成签到,获得积分10
4秒前
鱼鱼鱼发布了新的文献求助10
4秒前
5秒前
深情安青应助刺五加采纳,获得10
5秒前
飞龙在天完成签到 ,获得积分10
6秒前
勤恳的心情完成签到,获得积分10
7秒前
7秒前
吴帅完成签到,获得积分10
7秒前
Jasper应助111采纳,获得10
8秒前
受伤问凝完成签到 ,获得积分10
9秒前
76542cu发布了新的文献求助10
9秒前
9秒前
专注寻菱完成签到,获得积分10
9秒前
star应助藏匿采纳,获得10
10秒前
10秒前
CodeCraft应助yangoweowe采纳,获得10
11秒前
11秒前
Akim应助kaphter01采纳,获得10
12秒前
薛天抒完成签到,获得积分10
12秒前
yi发布了新的文献求助10
12秒前
12秒前
13秒前
搜集达人应助瑾玉采纳,获得10
13秒前
13秒前
14秒前
长孙归尘发布了新的文献求助30
14秒前
14秒前
科研通AI6应助欢喜德天采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272683
求助须知:如何正确求助?哪些是违规求助? 4429853
关于积分的说明 13790177
捐赠科研通 4308344
什么是DOI,文献DOI怎么找? 2364197
邀请新用户注册赠送积分活动 1359798
关于科研通互助平台的介绍 1322761