Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:3
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静从阳完成签到,获得积分10
刚刚
冷风完成签到 ,获得积分10
1秒前
zlu发布了新的文献求助10
1秒前
过分着迷发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
未来完成签到,获得积分10
1秒前
2秒前
tinale_huang发布了新的文献求助10
2秒前
桐桐应助F光采纳,获得10
2秒前
斯文败类应助科研小笨猪采纳,获得10
2秒前
小Q啊啾发布了新的文献求助10
2秒前
2秒前
mingyahaoa完成签到,获得积分10
2秒前
整化学完成签到,获得积分10
3秒前
3秒前
CCC完成签到,获得积分10
3秒前
3秒前
3秒前
纪汶欣完成签到,获得积分10
4秒前
WHY发布了新的文献求助10
4秒前
甜甜的平蓝完成签到,获得积分10
4秒前
wuhao发布了新的文献求助10
5秒前
田様应助啦啦啦采纳,获得10
5秒前
likeit完成签到,获得积分10
5秒前
6秒前
Mz完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
徐个徐完成签到,获得积分10
7秒前
Jasper应助ziyue采纳,获得10
8秒前
smottom应助曾经的贞采纳,获得10
8秒前
Jade完成签到,获得积分10
9秒前
Ssu发布了新的文献求助20
9秒前
RowanLuo发布了新的文献求助10
9秒前
2Cd完成签到,获得积分10
10秒前
fft完成签到,获得积分20
10秒前
科研通AI6应助www采纳,获得10
10秒前
真知棒发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049