Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:3
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NPC-CBI完成签到,获得积分10
刚刚
1秒前
gaozige发布了新的文献求助10
1秒前
1秒前
Deyong发布了新的文献求助10
1秒前
zjy完成签到,获得积分10
2秒前
2秒前
善学以致用应助认真擎汉采纳,获得20
2秒前
3秒前
武雨寒完成签到,获得积分20
3秒前
3秒前
whoKnows应助露西亚采纳,获得20
4秒前
4秒前
njhuxs发布了新的文献求助10
4秒前
曲聋五发布了新的文献求助10
4秒前
Orange应助番茄薯片真好吃采纳,获得10
4秒前
paulmichael发布了新的文献求助10
5秒前
viang完成签到,获得积分10
5秒前
6秒前
不会取名完成签到,获得积分20
6秒前
武雨寒发布了新的文献求助10
6秒前
6秒前
开放的芮发布了新的文献求助10
7秒前
顾矜应助zjy采纳,获得10
7秒前
Haki发布了新的文献求助10
7秒前
8秒前
scainiao发布了新的文献求助10
8秒前
涛1完成签到 ,获得积分10
8秒前
彩虹糖发布了新的文献求助10
9秒前
collin发布了新的文献求助10
9秒前
9秒前
盐植物发布了新的文献求助10
9秒前
bsf123完成签到,获得积分10
10秒前
mine发布了新的文献求助10
10秒前
10秒前
Sunny完成签到 ,获得积分10
12秒前
Wuyiqin完成签到,获得积分10
12秒前
13秒前
扶摇直上九万里完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269