Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast

图形 计算机科学 时间戳 特征学习 人工智能 理论计算机科学 模式识别(心理学) 计算机安全
作者
Kejia Chen,Linsong Liu,Linpu Jiang,Jingqiang Chen
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (1): 1-20 被引量:1
标识
DOI:10.1145/3612931
摘要

Self-supervised learning on graphs has recently drawn a lot of attention due to its independence from labels and its robustness in representation. Current studies on this topic mainly use static information such as graph structures but cannot well capture dynamic information such as timestamps of edges. Realistic graphs are often dynamic, which means the interaction between nodes occurs at a specific time. This article proposes a self-supervised dynamic graph representation learning framework DySubC, which defines a temporal subgraph contrastive learning task to simultaneously learn the structural and evolutional features of a dynamic graph. Specifically, a novel temporal subgraph sampling strategy is firstly proposed, which takes each node of the dynamic graph as the central node and uses both neighborhood structures and edge timestamps to sample the corresponding temporal subgraph. The subgraph representation function is then designed according to the influence of neighborhood nodes on the central node after encoding the nodes in each subgraph. Finally, the structural and temporal contrastive loss are defined to maximize the mutual information between node representation and temporal subgraph representation. Experiments on five real-world datasets demonstrate that (1) DySubC performs better than the related baselines including two graph contrastive learning models and five dynamic graph representation learning models, especially in the link prediction task, and (2) the use of temporal information cannot only sample more effective subgraphs, but also learn better representation by temporal contrastive loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xianhe完成签到,获得积分10
刚刚
HUU完成签到,获得积分10
2秒前
5秒前
忧郁盼夏完成签到,获得积分10
5秒前
5秒前
搜集达人应助su采纳,获得10
7秒前
丘比特应助gwenjing采纳,获得10
7秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
冷艳的姿发布了新的文献求助10
9秒前
dpp完成签到,获得积分10
10秒前
周周完成签到,获得积分10
12秒前
13秒前
13秒前
哈哈哈发布了新的文献求助30
13秒前
123发布了新的文献求助10
14秒前
16秒前
Stardust发布了新的文献求助10
16秒前
momo发布了新的文献求助10
17秒前
19秒前
笑笑完成签到,获得积分20
21秒前
stephenzh完成签到,获得积分10
21秒前
su发布了新的文献求助10
23秒前
笑笑发布了新的文献求助10
24秒前
李健的粉丝团团长应助momo采纳,获得10
25秒前
情怀应助LJJ采纳,获得10
27秒前
31秒前
32秒前
32秒前
34秒前
阿里巴巴大盗完成签到,获得积分10
35秒前
zying发布了新的文献求助30
35秒前
传奇3应助muzi采纳,获得10
36秒前
36秒前
36秒前
谢琉圭发布了新的文献求助10
38秒前
wu发布了新的文献求助10
39秒前
打滚完成签到,获得积分10
40秒前
LJJ发布了新的文献求助10
40秒前
睡觉了完成签到 ,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173