Block copolymer electrolytes for lithium metal batteries: Strategies to boost both ionic conductivity and mechanical strength

材料科学 离子电导率 电解质 电导率 快离子导体 纳米技术 相(物质) 化学工程 复合材料 电极 化学 有机化学 物理化学 工程类
作者
Tianyi Wang,Lei Zhong,Min Xiao,Dongmei Han,Shuanjin Wang,Zhiheng Huang,Huang Sheng,Luyi Sun,Yuezhong Meng
出处
期刊:Progress in Polymer Science [Elsevier]
卷期号:146: 101743-101743 被引量:29
标识
DOI:10.1016/j.progpolymsci.2023.101743
摘要

The mechanically hard phase and ionically conductive phase endow suitably designed block copolymer electrolytes (BCPEs) with the “Janus” property, thus providing the opportunity to decouple the trade-off between mechanical strength and ionic conductivity by controlling the phase-separated structures. The conductivity of BCPEs is predominantly determined by the molecular structure of block copolymers and the type and concentration of additives, while the manipulation of phase-separated structures helps strengthen their mechanical support and ion transport. This review article presents an overview of BCPEs and focuses on the “molecular structure-phase structure-property” relationship. Ideally, BCPE membranes should have high-throughput and aligned ion transport channels perpendicular to electrodes. First, given the desired attributes of polymer electrolytes, i.e., high ionic conductivity, high strength, low thickness, and high limiting current density, we summarize the research status and optimization strategies for BCPEs. Second, we present a summary of methods that control the phase behavior of BCPEs based on the phase separation mechanism. Third, BCPEs are classified into dual-ion conductor and single-ion conductor, whose advantages and disadvantages are analyzed. Furthermore, we propose a design rationale for high-performance quasi-solid-state BCPEs. We elaborate polymerization methods for the regulation of molecular and phase structure. These aspects are believed to collectively contribute to BCPE membranes with both high ion-conductivity and high mechanical strength, further boosting the development of safe and high-energy solid-state lithium metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Domagin发布了新的文献求助10
4秒前
6秒前
虚幻书南发布了新的文献求助10
9秒前
11秒前
领导范儿应助feiying88采纳,获得10
12秒前
白菜完成签到 ,获得积分10
16秒前
科研通AI2S应助粥可温采纳,获得10
17秒前
18秒前
薄荷完成签到 ,获得积分10
18秒前
24秒前
mc08666完成签到,获得积分10
26秒前
包容诗槐完成签到,获得积分10
30秒前
彭于晏应助认真的恶天采纳,获得10
33秒前
精明的凡波完成签到,获得积分10
36秒前
科研通AI2S应助典雅的宝马采纳,获得10
39秒前
虚幻书南完成签到,获得积分10
41秒前
所所应助时灬羽采纳,获得10
41秒前
sunday2024完成签到,获得积分10
44秒前
三千完成签到 ,获得积分0
44秒前
舒心白安应助直率芸遥采纳,获得10
47秒前
liuqi完成签到 ,获得积分10
47秒前
50秒前
乱世才子完成签到,获得积分10
51秒前
51秒前
53秒前
2y发布了新的文献求助10
57秒前
南枝完成签到 ,获得积分10
58秒前
丁静完成签到 ,获得积分10
1分钟前
拣尽南枝完成签到,获得积分10
1分钟前
1分钟前
拣尽南枝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yyyy完成签到,获得积分10
1分钟前
后叶忽安发布了新的文献求助10
1分钟前
yyyy发布了新的文献求助10
1分钟前
菠萝菠萝哒应助后叶忽安采纳,获得20
1分钟前
慕青应助Tal采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
Field Guide to Insects of South Africa 660
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380506
求助须知:如何正确求助?哪些是违规求助? 2995682
关于积分的说明 8764876
捐赠科研通 2680694
什么是DOI,文献DOI怎么找? 1468100
科研通“疑难数据库(出版商)”最低求助积分说明 678880
邀请新用户注册赠送积分活动 670937