Artificial Intelligence Approach in Biomechanics of Gait and Sport: A Systematic Literature Review

运动生物力学 生物力学 人工智能 计算机科学 人工神经网络 体育科学 机器学习 步态 领域(数学) 模拟 物理医学与康复 医学 数学 生理学 纯数学
作者
Rozhin Molavian,Ali Fatahi,Hamed Abbasi,Davood Khezri
出处
期刊:Journal of biomedical physics & engineering [Salvia Medical Sciences Ltd]
卷期号:13 (5) 被引量:11
标识
DOI:10.31661/jbpe.v0i0.2305-1621
摘要

Artificial neural network helps humans in a wide range of activities, such as sports.This paper aims to investigate the effect of artificial intelligence on decision-making related to human gait and sports biomechanics, using computer-based software, and to investigate the impact of artificial intelligence on individuals' biomechanics during gait and sports performance.This review was conducted in compliance with the PRISMA guidelines. Abstracts and citations were identified through a search based on Science Direct, Google Scholar, PubMed, Elsevier, Springer Link, Web of Science, and Scopus search engines from 1995 up to 2023 to obtain relevant literature about the impact of artificial intelligence on biomechanics. A total of 1000 articles were found related to biomechanical characteristics of gait and sport and 26 articles were directly pertinent to the subject.The extent of the application of artificial intelligence in sports biomechanics in various fields. In addition, various variables in the fields of kinematics, kinetics, and the field of time can be investigated based on artificial intelligence. Conventional computational techniques are limited by the inability to process data in its raw form. Artificial Intelligence (AI) and Machine Learning (ML) techniques can handle complex and high-dimensional data.The utilization of specialized systems and neural networks in gait analysis has shown great potential in sports performance analysis. Integrating AI into this field would be a significant advancement in sport biomechanics. Coaches and athletes can develop more precise training regimens with specialized performance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的铁锤应助kingwill采纳,获得100
2秒前
所所应助谦让寄容采纳,获得10
2秒前
SJW--666完成签到,获得积分0
2秒前
充电宝应助6rkuttsmdt采纳,获得10
2秒前
ding应助happyxuexi采纳,获得10
3秒前
猛男航完成签到,获得积分10
3秒前
get发布了新的文献求助10
5秒前
haha完成签到 ,获得积分10
7秒前
kingwill应助ddd采纳,获得20
7秒前
Agernon应助单纯尔蓝采纳,获得10
7秒前
10秒前
10秒前
11秒前
12秒前
12秒前
MA完成签到,获得积分10
15秒前
geo完成签到,获得积分10
15秒前
风中的天空完成签到,获得积分10
15秒前
zwtaihua1025完成签到,获得积分10
15秒前
Sunny发布了新的文献求助10
15秒前
谦让寄容发布了新的文献求助10
17秒前
happyxuexi发布了新的文献求助10
17秒前
17秒前
zwtaihua1025发布了新的文献求助10
18秒前
Jasper应助耶zyf采纳,获得10
18秒前
19秒前
19秒前
19秒前
青花发布了新的文献求助10
22秒前
榴莲受众完成签到,获得积分20
22秒前
zs完成签到 ,获得积分10
22秒前
李温温完成签到,获得积分10
23秒前
李健的小迷弟应助tiantian采纳,获得10
24秒前
24秒前
24秒前
ceeray23应助嘚嘚采纳,获得10
24秒前
神勇映安发布了新的文献求助30
25秒前
XXX发布了新的文献求助10
25秒前
常毓璇完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552161
求助须知:如何正确求助?哪些是违规求助? 3128470
关于积分的说明 9378076
捐赠科研通 2827552
什么是DOI,文献DOI怎么找? 1554473
邀请新用户注册赠送积分活动 725481
科研通“疑难数据库(出版商)”最低求助积分说明 714915