Reanalysis of single-cell data reveals macrophage subsets associated with the immunotherapy response and prognosis of patients with endometrial cancer

生物 免疫疗法 巨噬细胞 肿瘤相关巨噬细胞 子宫内膜癌 恶性肿瘤 免疫系统 肿瘤微环境 癌症研究 癌症 川地163 免疫学 遗传学 体外
作者
Qianhua Wu,Genyi Jiang,Yihan Sun,Bilan Li
出处
期刊:Experimental Cell Research [Elsevier]
卷期号:430 (2): 113736-113736 被引量:5
标识
DOI:10.1016/j.yexcr.2023.113736
摘要

Endometrial cancer (EC) is an aggressive gynecological malignancy with an increased incidence rate. The immune landscape crucially affects immunotherapy efficacy and prognosis in EC patients. Here, we characterized the distinct tumor microenvironment signatures of EC tumors by analyzing single-cell RNA sequencing data from Gene Expression Omnibus and bulk RNA sequencing data from The Cancer Genome Atlas, which were compared with normal endometrium. Three macrophage subsets were identified, and two of them showed tissue-specific distribution. One of the macrophage subsets was dominant in macrophages derived from EC and exhibited characteristic behaviors such as promoting tumor growth and metastasis. One of the other macrophage subsets was mainly found in normal endometrium and served functions related to antigen presentation. We also identified a macrophage subset that was found in both EC and normal endometrial tissue. However, the pathway and cellular cross-talk of this subset were completely different based on the respective origin, suggesting a tumor-related differentiation mechanism of macrophages. Additionally, the tumor-enriched macrophage subset was found to predict immunotherapy responses in EC. Notably, we selected six genes from macrophage subset markers that could predict the survival of EC patients, SCL8A1, TXN, ANXA5, CST3, CD74 and NANS, and constructed a prognostic signature. To verify the signature, we identified immunohistochemistry for the tumor samples of 83 EC patients based on the selected genes and further followed up with the survival of the patients. Our results provide strong evidence that the signature can effectively predict the prognosis of EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你笑一下嘛zz完成签到,获得积分10
3秒前
小呆呆呆完成签到,获得积分10
3秒前
6秒前
王欣发布了新的文献求助10
11秒前
Sevendesu应助洪嘻嘻采纳,获得10
12秒前
13秒前
不吃橘子完成签到,获得积分10
13秒前
13秒前
16秒前
shimly0101xx发布了新的文献求助10
17秒前
19秒前
22秒前
宋治发布了新的文献求助10
22秒前
马树成完成签到,获得积分10
25秒前
科研小白发布了新的文献求助10
27秒前
27秒前
28秒前
领导范儿应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得20
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
33秒前
CipherSage应助安安安采纳,获得10
33秒前
smile完成签到 ,获得积分10
36秒前
Hqc完成签到,获得积分10
37秒前
小蘑菇应助梅川秋裤采纳,获得10
39秒前
39秒前
Tian发布了新的文献求助10
40秒前
许鑫蓁发布了新的文献求助10
41秒前
lw关注了科研通微信公众号
43秒前
NWP关闭了NWP文献求助
43秒前
44秒前
47秒前
坚持每天读10h书完成签到 ,获得积分20
49秒前
50秒前
55秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264457
求助须知:如何正确求助?哪些是违规求助? 2904489
关于积分的说明 8330607
捐赠科研通 2574773
什么是DOI,文献DOI怎么找? 1399398
科研通“疑难数据库(出版商)”最低求助积分说明 654484
邀请新用户注册赠送积分活动 633194