Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

强化学习 计算机科学 离散化 控制器(灌溉) 人工智能 癌症治疗 最优控制 机器学习 癌症 医学 数学优化 数学 数学分析 内科学 农学 生物
作者
Hoda Mashayekhi,Mostafa Nazari,Fatemeh Jafarinejad,Nader Meskin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107884-107884 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107884
摘要

Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
上官若男应助小郭采纳,获得10
3秒前
4秒前
ruru发布了新的文献求助10
4秒前
小黑发布了新的文献求助10
4秒前
淑芬关注了科研通微信公众号
5秒前
科研通AI2S应助楚小儿采纳,获得10
5秒前
糟糕的语芹完成签到 ,获得积分10
6秒前
Hello应助SiO2采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
ggtry完成签到,获得积分10
8秒前
瞬光完成签到,获得积分10
8秒前
11发布了新的文献求助10
8秒前
米米碎片发布了新的文献求助10
8秒前
8秒前
8秒前
Shirley完成签到,获得积分10
8秒前
灯飞发布了新的文献求助10
9秒前
蛋挞发布了新的文献求助10
9秒前
9秒前
852应助开心使者采纳,获得10
10秒前
研友_89KGOn完成签到,获得积分10
10秒前
monned发布了新的文献求助10
11秒前
ChenYX完成签到,获得积分10
11秒前
12秒前
木木给木木的求助进行了留言
12秒前
13秒前
13秒前
13秒前
14秒前
16秒前
16秒前
芦同学完成签到,获得积分10
17秒前
17秒前
天天开心发布了新的文献求助10
18秒前
加油发布了新的文献求助10
19秒前
SiO2发布了新的文献求助10
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978