Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

强化学习 计算机科学 离散化 控制器(灌溉) 人工智能 癌症治疗 最优控制 机器学习 癌症 医学 数学优化 数学 农学 生物 内科学 数学分析
作者
Hoda Mashayekhi,Mostafa Nazari,Fatemeh Jafarinejad,Nader Meskin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107884-107884 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107884
摘要

Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸奶巧克力完成签到,获得积分10
刚刚
凉薄少年应助unique采纳,获得10
刚刚
yuer完成签到,获得积分10
1秒前
hh发布了新的文献求助10
1秒前
完美世界应助yyymmma采纳,获得10
1秒前
眯眯眼的衬衫应助LR采纳,获得10
1秒前
在水一方应助LR采纳,获得10
1秒前
希望天下0贩的0应助遮宁采纳,获得10
1秒前
1秒前
利物浦996发布了新的文献求助10
1秒前
1秒前
热泪盈眶完成签到,获得积分10
2秒前
3秒前
Akim应助知行合一采纳,获得10
3秒前
Lucas应助111采纳,获得10
3秒前
3秒前
3秒前
xrang完成签到 ,获得积分10
3秒前
4秒前
黄如完成签到,获得积分10
4秒前
慕青应助安白采纳,获得10
4秒前
猪猪hero发布了新的文献求助30
5秒前
长度2到发布了新的文献求助20
5秒前
小周发布了新的文献求助10
5秒前
旅途规律完成签到,获得积分10
6秒前
虞头星星发布了新的文献求助10
6秒前
7秒前
可一发布了新的文献求助10
7秒前
云端筑梦师完成签到,获得积分10
7秒前
热泪盈眶发布了新的文献求助10
7秒前
luo发布了新的文献求助10
7秒前
DT发布了新的文献求助10
8秒前
Xenia完成签到,获得积分10
8秒前
lumin完成签到,获得积分0
8秒前
大意的星星完成签到,获得积分10
8秒前
supertkeb完成签到,获得积分10
9秒前
unique完成签到,获得积分10
9秒前
爆米花应助网球采纳,获得10
9秒前
ZJH完成签到,获得积分20
10秒前
enen发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977