Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

强化学习 计算机科学 离散化 控制器(灌溉) 人工智能 癌症治疗 最优控制 机器学习 癌症 医学 数学优化 数学 数学分析 内科学 农学 生物
作者
Hoda Mashayekhi,Mostafa Nazari,Fatemeh Jafarinejad,Nader Meskin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107884-107884 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107884
摘要

Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李汀发布了新的文献求助10
刚刚
1秒前
percy发布了新的文献求助10
1秒前
浮游应助勤奋傲儿采纳,获得10
1秒前
浮游应助勤奋傲儿采纳,获得10
1秒前
2秒前
可爱的函函应助黄紫红蓝采纳,获得10
2秒前
纪汶欣发布了新的文献求助20
2秒前
pluto应助幽默尔蓝采纳,获得10
2秒前
专注的问寒应助ss采纳,获得20
3秒前
Nicole发布了新的文献求助10
4秒前
4秒前
4秒前
传奇3应助调皮的炳采纳,获得10
4秒前
依依完成签到 ,获得积分20
4秒前
科目三应助灰色头像采纳,获得10
4秒前
王麒发布了新的文献求助10
5秒前
5秒前
飞奔的五花肉完成签到,获得积分10
5秒前
usokb完成签到,获得积分10
5秒前
紫菱星君完成签到,获得积分10
6秒前
秦梓涵的妈妈完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
大个应助青山采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
CXR完成签到,获得积分10
9秒前
科目三应助甜叶菊采纳,获得10
9秒前
和科比发布了新的文献求助10
9秒前
小柒完成签到,获得积分20
10秒前
科研通AI6应助徐仁森采纳,获得10
10秒前
D&L发布了新的文献求助10
11秒前
TheDay发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398