Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

强化学习 计算机科学 离散化 控制器(灌溉) 人工智能 癌症治疗 最优控制 机器学习 癌症 医学 数学优化 数学 数学分析 内科学 农学 生物
作者
Hoda Mashayekhi,Mostafa Nazari,Fatemeh Jafarinejad,Nader Meskin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107884-107884 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107884
摘要

Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YING发布了新的文献求助20
刚刚
高手如林完成签到,获得积分10
刚刚
繁荣的白亦完成签到 ,获得积分10
1秒前
按时毕业完成签到,获得积分20
1秒前
Lvy完成签到,获得积分10
1秒前
jian94完成签到,获得积分10
1秒前
ColdSunWu完成签到,获得积分10
1秒前
王佳慧完成签到 ,获得积分10
2秒前
cassies完成签到 ,获得积分10
2秒前
2秒前
halo完成签到 ,获得积分10
2秒前
zz568完成签到,获得积分10
4秒前
单薄树叶完成签到,获得积分10
4秒前
Xl完成签到,获得积分10
5秒前
Hello应助hyx采纳,获得10
6秒前
shineshine完成签到 ,获得积分10
6秒前
niNe3YUE应助莉莉子采纳,获得10
7秒前
欧阳发布了新的文献求助10
7秒前
陈思完成签到,获得积分10
7秒前
又困了大王完成签到,获得积分10
8秒前
zzzzzdz完成签到,获得积分10
8秒前
拾光发布了新的文献求助10
9秒前
七八九完成签到 ,获得积分10
9秒前
酷炫橘子完成签到,获得积分10
11秒前
11秒前
塇塇完成签到,获得积分10
11秒前
凉小远完成签到,获得积分10
12秒前
L7.完成签到,获得积分10
13秒前
Ray完成签到,获得积分10
13秒前
奥拉同学完成签到,获得积分10
13秒前
背后半烟完成签到,获得积分10
14秒前
fanfan完成签到,获得积分10
14秒前
michael发布了新的文献求助10
14秒前
洁净的天德完成签到,获得积分10
14秒前
1233完成签到 ,获得积分10
15秒前
Liugz完成签到,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
研友_24789完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735