Deep reinforcement learning-based control of chemo-drug dose in cancer treatment

强化学习 计算机科学 离散化 控制器(灌溉) 人工智能 癌症治疗 最优控制 机器学习 癌症 医学 数学优化 数学 数学分析 内科学 农学 生物
作者
Hoda Mashayekhi,Mostafa Nazari,Fatemeh Jafarinejad,Nader Meskin
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107884-107884 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107884
摘要

Advancement in the treatment of cancer, as a leading cause of death worldwide, has promoted several research activities in various related fields. The development of effective treatment regimens with optimal drug dose administration using a mathematical modeling framework has received extensive research attention during the last decades. However, most of the control techniques presented for cancer chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement Learning (RL), commonly discretize the problem states and variables, which other than demanding expert supervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning (DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer chemotherapy. In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simulating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states of the patient. The proposed method provides an adaptive control technique to respond to the special conditions and diagnosis measurements of different categories of patients. The performance of the proposed DRL-based controller is evaluated by numerical analysis of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses discretized state and action spaces, shows the superiority of the approach in the process and duration of cancer chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SDM完成签到,获得积分10
刚刚
雪落完成签到,获得积分10
刚刚
yj完成签到 ,获得积分20
1秒前
初余完成签到,获得积分20
1秒前
淡淡宛完成签到 ,获得积分10
1秒前
2秒前
wzz发布了新的文献求助10
2秒前
Lina HE完成签到 ,获得积分10
3秒前
潇湘雪月完成签到,获得积分10
3秒前
4秒前
纸飞机发布了新的文献求助10
4秒前
科研通AI2S应助小羽采纳,获得10
5秒前
5秒前
可靠的书桃应助倩宝宝采纳,获得10
5秒前
q12完成签到,获得积分10
5秒前
墨秘一完成签到,获得积分10
6秒前
sj发布了新的文献求助10
6秒前
呐呐完成签到,获得积分10
7秒前
夏佳泽完成签到,获得积分10
7秒前
7秒前
kkkkk发布了新的文献求助10
8秒前
yzx完成签到 ,获得积分10
8秒前
一叶知秋发布了新的文献求助10
8秒前
8秒前
tuanheqi应助我爱科研采纳,获得20
8秒前
8秒前
华仔应助氿儿采纳,获得30
9秒前
dropofwater完成签到,获得积分10
9秒前
wzz完成签到,获得积分10
10秒前
脆皮鱼完成签到 ,获得积分10
10秒前
nicholaswk发布了新的文献求助10
11秒前
孤独孤风完成签到,获得积分10
11秒前
内卷没有赢家完成签到,获得积分10
12秒前
索谓完成签到 ,获得积分10
13秒前
PePsi发布了新的文献求助10
13秒前
甜甜十三完成签到,获得积分10
13秒前
Mint发布了新的文献求助10
14秒前
li完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565