Unveiling the potential of proteomic and genetic signatures for precision therapeutics in lung cancer management

精密医学 个性化医疗 生物标志物发现 组学 蛋白质组学 生物标志物 肺癌 医学 生物信息学 临床试验 基因组学 计算生物学 生物 病理 基因组 生物化学 基因
作者
Shriyansh Srivastava,Nandani Jayaswal,Sachin Kumar,Pramod Kumar Sharma,Tapan Behl,Asaad Khalid,Syam Mohan,Asim Najmi,Khalid Zoghebi,Hassan A. Alhazmi
出处
期刊:Cellular Signalling [Elsevier BV]
卷期号:113: 110932-110932 被引量:19
标识
DOI:10.1016/j.cellsig.2023.110932
摘要

Lung cancer's enduring global significance necessitates ongoing advancements in diagnostics and therapeutics. Recent spotlight on proteomic and genetic biomarker research offers a promising avenue for understanding lung cancer biology and guiding treatments. This review elucidates genetic and proteomic lung cancer biomarker progress and their treatment implications. Technological strides in mass spectrometry-based proteomics and next-generation sequencing enable pinpointing of genetic abnormalities and abnormal protein expressions, furnishing vital data for precise diagnosis, patient classification, and customized treatments. Biomarker-driven personalized medicine yields substantial treatment improvements, elevating survival rates and minimizing adverse effects. Integrating omics data (genomics, proteomics, etc.) enhances understanding of lung cancer's intricate biological milieu, identifying novel treatment targets and biomarkers, fostering precision medicine. Liquid biopsies, non-invasive tools for real-time treatment monitoring and early resistance detection, gain popularity, promising enhanced management and personalized therapy. Despite advancements, biomarker repeatability and validation challenges persist, necessitating interdisciplinary efforts and large-scale clinical trials. Integrating artificial intelligence and machine learning aids analyzing vast omics datasets and predicting treatment responses. Single-cell omics reveal cellular connections and intratumoral heterogeneity, valuable for combination treatments. Biomarkers enable accurate diagnosis, tailored medicines, and treatment response tracking, significantly impacting personalized lung cancer care. This approach spurs patient-centered trials, empowering active patient engagement. Lung cancer proteomic and genetic biomarkers illuminate disease biology and treatment prospects. Progressing towards individualized efficient therapies is imminent, alleviating lung cancer's burden through ongoing research, omics integration, and technological strides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助YN3585采纳,获得10
刚刚
xiaobai发布了新的文献求助10
3秒前
3秒前
4秒前
无限猫咪完成签到 ,获得积分10
5秒前
5秒前
领导范儿应助wwm采纳,获得10
5秒前
不挤牙膏发布了新的文献求助10
7秒前
xiangoak发布了新的文献求助10
8秒前
有魅力曼荷完成签到 ,获得积分10
8秒前
徐什么坤完成签到,获得积分10
9秒前
9秒前
卷卷发布了新的文献求助10
10秒前
hyg发布了新的文献求助30
12秒前
123发布了新的文献求助10
13秒前
15秒前
勤奋无敌完成签到 ,获得积分10
16秒前
土豆泥完成签到 ,获得积分10
17秒前
kano完成签到 ,获得积分10
17秒前
20秒前
Wang1991发布了新的文献求助10
21秒前
Owen应助跳跃的洪纲采纳,获得10
22秒前
yyy完成签到,获得积分20
22秒前
香蕉觅云应助123采纳,获得10
23秒前
shaohua2011发布了新的文献求助10
24秒前
26秒前
英姑应助谢谢谢采纳,获得10
27秒前
28秒前
den发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
32秒前
33秒前
在水一方应助runer采纳,获得10
33秒前
LBY发布了新的文献求助10
35秒前
恩雁发布了新的文献求助10
36秒前
共享精神应助连仁兄采纳,获得10
38秒前
JamesPei应助连仁兄采纳,获得10
38秒前
wgglegg完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624785
求助须知:如何正确求助?哪些是违规求助? 4024076
关于积分的说明 12456301
捐赠科研通 3708763
什么是DOI,文献DOI怎么找? 2045646
邀请新用户注册赠送积分活动 1077637
科研通“疑难数据库(出版商)”最低求助积分说明 960142