Unveiling the potential of proteomic and genetic signatures for precision therapeutics in lung cancer management

精密医学 个性化医疗 生物标志物发现 组学 蛋白质组学 生物标志物 肺癌 医学 生物信息学 临床试验 基因组学 计算生物学 生物 病理 基因组 生物化学 基因
作者
Shriyansh Srivastava,Nandani Jayaswal,Sachin Kumar,Pramod Kumar Sharma,Tapan Behl,Asaad Khalid,Syam Mohan,Asim Najmi,Khalid Zoghebi,Hassan A. Alhazmi
出处
期刊:Cellular Signalling [Elsevier]
卷期号:113: 110932-110932 被引量:19
标识
DOI:10.1016/j.cellsig.2023.110932
摘要

Lung cancer's enduring global significance necessitates ongoing advancements in diagnostics and therapeutics. Recent spotlight on proteomic and genetic biomarker research offers a promising avenue for understanding lung cancer biology and guiding treatments. This review elucidates genetic and proteomic lung cancer biomarker progress and their treatment implications. Technological strides in mass spectrometry-based proteomics and next-generation sequencing enable pinpointing of genetic abnormalities and abnormal protein expressions, furnishing vital data for precise diagnosis, patient classification, and customized treatments. Biomarker-driven personalized medicine yields substantial treatment improvements, elevating survival rates and minimizing adverse effects. Integrating omics data (genomics, proteomics, etc.) enhances understanding of lung cancer's intricate biological milieu, identifying novel treatment targets and biomarkers, fostering precision medicine. Liquid biopsies, non-invasive tools for real-time treatment monitoring and early resistance detection, gain popularity, promising enhanced management and personalized therapy. Despite advancements, biomarker repeatability and validation challenges persist, necessitating interdisciplinary efforts and large-scale clinical trials. Integrating artificial intelligence and machine learning aids analyzing vast omics datasets and predicting treatment responses. Single-cell omics reveal cellular connections and intratumoral heterogeneity, valuable for combination treatments. Biomarkers enable accurate diagnosis, tailored medicines, and treatment response tracking, significantly impacting personalized lung cancer care. This approach spurs patient-centered trials, empowering active patient engagement. Lung cancer proteomic and genetic biomarkers illuminate disease biology and treatment prospects. Progressing towards individualized efficient therapies is imminent, alleviating lung cancer's burden through ongoing research, omics integration, and technological strides.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoya927217发布了新的文献求助10
1秒前
上官若男应助maohuibai采纳,获得10
1秒前
水牛发布了新的文献求助10
1秒前
灵76完成签到,获得积分10
1秒前
蜗牛完成签到,获得积分10
2秒前
Lotus完成签到,获得积分10
3秒前
王饱饱完成签到,获得积分10
4秒前
4秒前
iish完成签到,获得积分20
4秒前
4秒前
郑朗逸应助长言采纳,获得10
4秒前
4秒前
仙姑完成签到,获得积分10
5秒前
深情安青应助grace采纳,获得10
5秒前
天天快乐应助77采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助Snoopy采纳,获得10
6秒前
6秒前
6秒前
7秒前
Vet周发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
丘比特应助Knight采纳,获得10
8秒前
8秒前
li关闭了li文献求助
8秒前
9秒前
9秒前
10秒前
ding应助开心的不尤采纳,获得10
10秒前
10秒前
10秒前
10秒前
guojingjing发布了新的文献求助10
10秒前
XZHU发布了新的文献求助10
11秒前
lin发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592