Multi-scale Perception and Feature Refinement Network for multi-class segmentation of intracerebral hemorrhage in CT images

分割 计算机科学 人工智能 脑出血 特征(语言学) 实质内出血 模式识别(心理学) 比例(比率) 计算机视觉 医学 地图学 地理 外科 语言学 哲学 蛛网膜下腔出血
作者
Xiao Ye,Yuanyuan Hou,Zhi‐Qiang Wang,Yuan Zhang,Xuanya Li,Kai Hu,Xieping Gao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105614-105614 被引量:3
标识
DOI:10.1016/j.bspc.2023.105614
摘要

Intracerebral hemorrhage (ICH) poses a severe threat to human health and well-being. Automatic segmentation of hematomas in CT images can provide essential diagnostic assistance to physicians, and ensure improved treatment and recovery outcomes for patients. Existing methods for intracerebral hemorrhage segmentation mainly focus on identifying hemorrhage areas, without the ability to accurately distinguish and outline different types of hematomas. However, different types of hemorrhage exhibit a high degree of similarity in terms of gray matter level and shape, and the scale of hematomas can vary significantly. To address this issue, we propose a Multi-scale Perception and Feature Refinement Network (MPFR-Net) for automatic segmentation of both intraparenchymal and intraventricular hemorrhages. Specifically, we propose a Multi-scale Perception Module (MPM), which consists of the integration of features at different levels and the local and global multi-scale branches. MPM allows for the efficient extraction of multi-scale features and the establishment of long-range relationships between the target and background. Additionally, we propose a Feature Refinement Module (FRM) to refine fuzzy detail information that has been lost after down-sampling to the deep layer, while simultaneously supplementing the small target information from shallow features. To improve the clinical adaptability of our method, we further collect 608 patient cases from multiple hospitals to construct a multi-center dataset, termed as ICH-Seg in which each case contains both intraparenchymal and intraventricular hemorrhages. From the quantitative and visual results, MPFR-Net outperforms previous methods on both private and public datasets, showing promising segmentation for intracerebral hemorrhage and potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到 ,获得积分10
3秒前
眼睛大智宸完成签到,获得积分10
5秒前
濮阳盼曼完成签到,获得积分10
6秒前
yanghua完成签到 ,获得积分10
6秒前
专玩对抗路完成签到,获得积分10
7秒前
共享精神应助夏寄风采纳,获得10
8秒前
walker完成签到 ,获得积分10
10秒前
苗苗043完成签到,获得积分10
12秒前
14秒前
davyean完成签到,获得积分10
14秒前
兔子先生完成签到,获得积分10
18秒前
huluobo发布了新的文献求助10
19秒前
吨吨完成签到,获得积分10
21秒前
alvin完成签到,获得积分10
22秒前
hailiangzheng完成签到,获得积分10
23秒前
3w学术完成签到,获得积分10
23秒前
李君然完成签到,获得积分10
25秒前
chenyan完成签到,获得积分10
27秒前
MJMO完成签到,获得积分10
28秒前
褚洙完成签到,获得积分10
28秒前
小柒柒完成签到,获得积分10
29秒前
哈库呐马塔塔完成签到,获得积分10
30秒前
整齐泥猴桃完成签到 ,获得积分10
33秒前
夜雨诗意完成签到,获得积分10
33秒前
岑夜南完成签到,获得积分10
34秒前
嘟嘟嘟完成签到,获得积分10
39秒前
苏素完成签到,获得积分10
40秒前
Bethune完成签到 ,获得积分10
40秒前
ChenXY完成签到,获得积分10
41秒前
搜集达人应助科研通管家采纳,获得10
42秒前
Polymer72应助科研通管家采纳,获得10
42秒前
Polymer72应助科研通管家采纳,获得10
42秒前
茶果完成签到,获得积分10
43秒前
踏实谷蓝完成签到 ,获得积分10
44秒前
fosca完成签到,获得积分10
44秒前
49秒前
科研通AI2S应助潇然采纳,获得10
52秒前
King完成签到,获得积分10
54秒前
wendy发布了新的文献求助10
55秒前
唐唐完成签到,获得积分10
56秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350061
求助须知:如何正确求助?哪些是违规求助? 2975894
关于积分的说明 8671867
捐赠科研通 2657014
什么是DOI,文献DOI怎么找? 1454824
科研通“疑难数据库(出版商)”最低求助积分说明 673517
邀请新用户注册赠送积分活动 663979