High Spatial Resolution OFDR System Based on Independent Component Analysis Algorithm for Long-Range Distributed Strain Measurement

独立成分分析 图像分辨率 噪音(视频) 标准差 降噪 反射计 小波 计算机科学 小波变换 人工智能 算法 计算机视觉 数学 图像(数学) 时域 统计
作者
Shuai Li,Yanping Xu,Zhaojun Liu,Xiyu Yang,Zengguang Qin
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1716-1724 被引量:2
标识
DOI:10.1109/jlt.2023.3325159
摘要

In this study, a high spatial resolution optical frequency domain reflectometry (OFDR) based on independent component analysis (ICA) algorithm is proposed and experimentally demonstrated. In the proposed sensing system, two-dimensional (2D) images with wavelength shift information induced by applied strains as a function of fiber position are constructed by utilizing the data arrays obtained after cross-correlation processing of the reference signal and measurement signals of each sensing fiber segment. The ICA algorithm, as an effective 2D image denoising technique, is applied to the constructed 2D images to remove random noise and improve the sensing accuracy of the system so as to realize long-range distributed strain measurement with high spatial resolution. Compared with traditional 2D image denoising methods including the Gaussian filtering (GF) method and the wavelet denoising (WD) method, ICA method makes full use of the independence of image source information and noise information, which is able to effectively suppress the intensification of noise without compromising the source information. With no modification on the OFDR hardware system, strain gradient information is successfully extracted over an effective sensing distance of 75 m with a spatial resolution up to 2 mm by using the ICA method. The calculated mean strain measurement error for the ICA method is 5.45 μϵ, which is significantly improved compared to the error of 72.73 μϵ when no image denoising method is applied and reduced by approximately half compared to the errors when traditional GF method and WD method are used. The mean standard deviations of the measured strain gradient along the sensing fiber length for the proposed method, the GF method and the WD method are reduced by 93.42%, 76.99%, and 84.56%, respectively, compared to the raw data without any denoising processing, showing excellent smoothness of the recovered strain profiles. The signal-to-noise ratio (SNR) for the proposed method is improved by 23.17 dB, which is better than 14.8 dB of GF and 19.1 dB of WD. The experimental results show that the proposed method provides a new solution for OFDR system on achieving long-distance distributed strain sensing with high spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
刚刚
chelly完成签到,获得积分10
刚刚
谢生婷发布了新的文献求助10
1秒前
chen完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
坦率灵槐发布了新的文献求助10
3秒前
坚定的傲易完成签到,获得积分10
3秒前
动听的青曼完成签到,获得积分10
3秒前
小乂发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
CH3N完成签到,获得积分10
5秒前
漂亮的雁露完成签到,获得积分10
6秒前
77最可爱完成签到 ,获得积分10
7秒前
7秒前
LLLKAIXINGUO发布了新的文献求助10
7秒前
8秒前
麻辣烫小姐完成签到,获得积分10
8秒前
hilm给认真绿竹的求助进行了留言
9秒前
9秒前
一一发布了新的文献求助10
9秒前
小蘑菇应助鬲木采纳,获得10
9秒前
10秒前
科研通AI6应助今晚吃什么采纳,获得10
10秒前
Rika_Ran发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
么么哒发布了新的文献求助10
13秒前
朱猪侠发布了新的文献求助10
13秒前
cruise发布了新的文献求助10
14秒前
2339822272发布了新的文献求助10
15秒前
灵运完成签到,获得积分10
15秒前
swh完成签到,获得积分10
16秒前
奋斗的苞络完成签到,获得积分20
16秒前
xixi很困完成签到,获得积分10
16秒前
Eason小川完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460966
求助须知:如何正确求助?哪些是违规求助? 4566057
关于积分的说明 14302811
捐赠科研通 4491640
什么是DOI,文献DOI怎么找? 2460418
邀请新用户注册赠送积分活动 1449754
关于科研通互助平台的介绍 1425527