High Spatial Resolution OFDR System Based on Independent Component Analysis Algorithm for Long-Range Distributed Strain Measurement

独立成分分析 图像分辨率 噪音(视频) 标准差 降噪 反射计 小波 计算机科学 小波变换 人工智能 算法 计算机视觉 数学 图像(数学) 时域 统计
作者
Shuai Li,Yanping Xu,Zhaojun Liu,Xiyu Yang,Zengguang Qin
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1716-1724 被引量:2
标识
DOI:10.1109/jlt.2023.3325159
摘要

In this study, a high spatial resolution optical frequency domain reflectometry (OFDR) based on independent component analysis (ICA) algorithm is proposed and experimentally demonstrated. In the proposed sensing system, two-dimensional (2D) images with wavelength shift information induced by applied strains as a function of fiber position are constructed by utilizing the data arrays obtained after cross-correlation processing of the reference signal and measurement signals of each sensing fiber segment. The ICA algorithm, as an effective 2D image denoising technique, is applied to the constructed 2D images to remove random noise and improve the sensing accuracy of the system so as to realize long-range distributed strain measurement with high spatial resolution. Compared with traditional 2D image denoising methods including the Gaussian filtering (GF) method and the wavelet denoising (WD) method, ICA method makes full use of the independence of image source information and noise information, which is able to effectively suppress the intensification of noise without compromising the source information. With no modification on the OFDR hardware system, strain gradient information is successfully extracted over an effective sensing distance of 75 m with a spatial resolution up to 2 mm by using the ICA method. The calculated mean strain measurement error for the ICA method is 5.45 μϵ, which is significantly improved compared to the error of 72.73 μϵ when no image denoising method is applied and reduced by approximately half compared to the errors when traditional GF method and WD method are used. The mean standard deviations of the measured strain gradient along the sensing fiber length for the proposed method, the GF method and the WD method are reduced by 93.42%, 76.99%, and 84.56%, respectively, compared to the raw data without any denoising processing, showing excellent smoothness of the recovered strain profiles. The signal-to-noise ratio (SNR) for the proposed method is improved by 23.17 dB, which is better than 14.8 dB of GF and 19.1 dB of WD. The experimental results show that the proposed method provides a new solution for OFDR system on achieving long-distance distributed strain sensing with high spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九发布了新的文献求助10
1秒前
于丽萍发布了新的文献求助10
1秒前
mikasa完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Square完成签到,获得积分10
3秒前
永不言弃完成签到,获得积分10
4秒前
丁昂霄完成签到 ,获得积分10
4秒前
phy发布了新的文献求助10
6秒前
ding应助Binbin采纳,获得10
7秒前
柳易槐完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
mikasa发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
宵宫完成签到,获得积分10
13秒前
13秒前
13秒前
迷人书蝶完成签到 ,获得积分10
14秒前
科研通AI6应助加菲丰丰采纳,获得10
14秒前
15秒前
沉静尔曼发布了新的文献求助10
16秒前
17秒前
辛未发布了新的文献求助10
17秒前
一牧牧发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
JamesPei应助de铭采纳,获得10
20秒前
21秒前
炙热的千凝完成签到,获得积分10
21秒前
小新XIAO完成签到,获得积分10
22秒前
思源应助浮浮世世采纳,获得10
23秒前
misaka发布了新的文献求助30
23秒前
laber应助福桃采纳,获得30
24秒前
24秒前
浮游应助文俊伟采纳,获得10
25秒前
笑点低的小霜完成签到 ,获得积分20
25秒前
Binbin发布了新的文献求助10
26秒前
领导范儿应助拓跋慕灵采纳,获得10
27秒前
华仔应助123321采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740