清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High Spatial Resolution OFDR System Based on Independent Component Analysis Algorithm for Long-Range Distributed Strain Measurement

独立成分分析 图像分辨率 噪音(视频) 标准差 降噪 反射计 小波 计算机科学 小波变换 人工智能 算法 计算机视觉 数学 图像(数学) 时域 统计
作者
Shuai Li,Yanping Xu,Zhaojun Liu,Xiyu Yang,Zengguang Qin
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1716-1724 被引量:1
标识
DOI:10.1109/jlt.2023.3325159
摘要

In this study, a high spatial resolution optical frequency domain reflectometry (OFDR) based on independent component analysis (ICA) algorithm is proposed and experimentally demonstrated. In the proposed sensing system, two-dimensional (2D) images with wavelength shift information induced by applied strains as a function of fiber position are constructed by utilizing the data arrays obtained after cross-correlation processing of the reference signal and measurement signals of each sensing fiber segment. The ICA algorithm, as an effective 2D image denoising technique, is applied to the constructed 2D images to remove random noise and improve the sensing accuracy of the system so as to realize long-range distributed strain measurement with high spatial resolution. Compared with traditional 2D image denoising methods including the Gaussian filtering (GF) method and the wavelet denoising (WD) method, ICA method makes full use of the independence of image source information and noise information, which is able to effectively suppress the intensification of noise without compromising the source information. With no modification on the OFDR hardware system, strain gradient information is successfully extracted over an effective sensing distance of 75 m with a spatial resolution up to 2 mm by using the ICA method. The calculated mean strain measurement error for the ICA method is 5.45 μϵ, which is significantly improved compared to the error of 72.73 μϵ when no image denoising method is applied and reduced by approximately half compared to the errors when traditional GF method and WD method are used. The mean standard deviations of the measured strain gradient along the sensing fiber length for the proposed method, the GF method and the WD method are reduced by 93.42%, 76.99%, and 84.56%, respectively, compared to the raw data without any denoising processing, showing excellent smoothness of the recovered strain profiles. The signal-to-noise ratio (SNR) for the proposed method is improved by 23.17 dB, which is better than 14.8 dB of GF and 19.1 dB of WD. The experimental results show that the proposed method provides a new solution for OFDR system on achieving long-distance distributed strain sensing with high spatial resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
45秒前
吹皱一湖春水完成签到 ,获得积分10
1分钟前
1分钟前
阿布都都应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
neversay4ever发布了新的文献求助10
2分钟前
zsyf完成签到,获得积分10
2分钟前
不复返的杆完成签到 ,获得积分10
3分钟前
一墨发布了新的文献求助30
3分钟前
3分钟前
Coffee完成签到 ,获得积分10
3分钟前
蓝桉完成签到 ,获得积分10
3分钟前
beplayer1完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
苏格拉没有底完成签到 ,获得积分10
4分钟前
4分钟前
风中鲂发布了新的文献求助10
4分钟前
4分钟前
飞翔的企鹅完成签到,获得积分10
5分钟前
DD完成签到 ,获得积分10
5分钟前
舒适的天奇完成签到 ,获得积分10
5分钟前
通科研完成签到 ,获得积分10
5分钟前
科研狗完成签到 ,获得积分10
5分钟前
6分钟前
mzhang2完成签到 ,获得积分10
6分钟前
11完成签到 ,获得积分10
6分钟前
紫熊完成签到,获得积分10
6分钟前
风中鲂发布了新的文献求助10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
曹操的曹完成签到,获得积分10
7分钟前
8分钟前
8分钟前
一夜很静发布了新的文献求助10
8分钟前
方白秋完成签到,获得积分10
8分钟前
一夜很静完成签到,获得积分10
9分钟前
君寻完成签到 ,获得积分10
9分钟前
飞快的冰淇淋完成签到 ,获得积分10
9分钟前
9分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356882
求助须知:如何正确求助?哪些是违规求助? 2980470
关于积分的说明 8694481
捐赠科研通 2662185
什么是DOI,文献DOI怎么找? 1457626
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665789