Based on the Cancer Genome Atlas Database Development of a prognostic model of RNA binding protein in stomach adenocarcinoma

核糖核酸 列线图 基因 RNA结合蛋白 计算生物学 比例危险模型 生物 危险系数 肿瘤科 生物信息学 医学 遗传学 内科学 置信区间
作者
Sayed Haidar Abbas Raza,Ruimin Zhong,Shen Xing,Xiaoting Yu,Liang Chengcheng,Linsen Zan,Nicola M. Schreurs,Sameer D. Pant,Hongtao Lei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107307-107307 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107307
摘要

The purpose of this study was to identify potential RNA binding proteins associated with the survival of gastric adenocarcinoma, as well as the corresponding biological characteristics and signaling pathways of these RNA binding proteins. RNA sequencing and clinical data were obtained from the cancer genome map (N = 32, T = 375) and the comprehensive gene expression database (GSE84437, N = 433). The samples in The Cancer Genome Atlas were randomly divided into a development group and a test group. A total of 1495 RNA binding protein related genes were extracted. Using nonparametric tests to analyze the difference of RNA binding protein related genes, 296 differential RNA binding proteins were obtained, 166 were up-regulated and 130 were down regulated. Twenty prognosis-related RNA binding proteins were screened using Cox regression, including 14 high-risk genes (hazard ratio > 1.0) and 6 low-risk genes (hazard ratio < 1.0). Seven RNA binding protein related genes were screened from the final prognostic model and used to construct a new prognostic model. Using the development group and test group, the model was verified with survival analysis, receiver operating characteristics curves and prognosis analysis curves. A prediction nomogram was finally developed and showed good prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星闪闪发布了新的文献求助10
1秒前
杨柳完成签到,获得积分20
2秒前
2秒前
么么叽完成签到,获得积分10
2秒前
4秒前
xiaowang完成签到,获得积分10
6秒前
YuLu完成签到 ,获得积分10
7秒前
7秒前
8秒前
哎嘿应助IAMXC采纳,获得10
8秒前
huihui完成签到 ,获得积分10
10秒前
Qz完成签到,获得积分10
11秒前
11秒前
13秒前
linllll发布了新的文献求助10
13秒前
13秒前
16秒前
美嘉美完成签到,获得积分10
17秒前
17秒前
wg发布了新的文献求助10
18秒前
瘦瘦安柏完成签到,获得积分10
19秒前
小C完成签到,获得积分10
19秒前
孟长歌发布了新的文献求助10
21秒前
JC完成签到,获得积分10
22秒前
斯文败类应助hunter采纳,获得10
23秒前
25秒前
25秒前
25秒前
乐观静蕾发布了新的文献求助10
26秒前
丰富冰凡完成签到,获得积分10
28秒前
burningzmz发布了新的文献求助10
29秒前
科研老头完成签到,获得积分10
29秒前
大模型应助是一个好故事采纳,获得10
32秒前
艺阳完成签到,获得积分10
33秒前
38秒前
38秒前
39秒前
Ethan发布了新的文献求助10
40秒前
41秒前
不配.应助郑派采纳,获得30
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413