重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sherrycofe完成签到,获得积分10
刚刚
jhfz完成签到,获得积分10
刚刚
阿海的发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
甜橙汁发布了新的文献求助10
1秒前
施宇宙发布了新的文献求助30
1秒前
小杨完成签到,获得积分10
1秒前
森林木完成签到,获得积分10
2秒前
2秒前
领导范儿应助4123采纳,获得10
2秒前
默默的斑马完成签到,获得积分10
3秒前
3秒前
moxuyio发布了新的文献求助10
3秒前
是多少完成签到,获得积分10
4秒前
5秒前
陈平安完成签到 ,获得积分10
6秒前
细心的寒天关注了科研通微信公众号
6秒前
bob完成签到,获得积分10
6秒前
zcx发布了新的文献求助10
7秒前
8秒前
kaiee发布了新的文献求助10
8秒前
8秒前
素素在文献互助完成签到,获得积分10
8秒前
TEDDY发布了新的文献求助10
8秒前
001发布了新的文献求助10
9秒前
nananana发布了新的文献求助10
9秒前
张权发布了新的文献求助10
9秒前
感动城发布了新的文献求助10
10秒前
小冰糖完成签到 ,获得积分10
10秒前
kk发布了新的文献求助10
10秒前
夜无疆完成签到,获得积分10
11秒前
平常紫安完成签到 ,获得积分10
11秒前
11秒前
秋海棠完成签到,获得积分10
11秒前
丘比特应助wangyibo采纳,获得10
11秒前
moxuyio完成签到,获得积分10
12秒前
Tony完成签到,获得积分10
13秒前
niuya完成签到,获得积分10
13秒前
施宇宙完成签到,获得积分10
13秒前
充电宝应助无语的小熊猫采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545