A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:28
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是站长才怪应助xg采纳,获得10
1秒前
童话艺术佳完成签到,获得积分10
1秒前
稀罕你完成签到,获得积分10
1秒前
junzilan发布了新的文献求助10
1秒前
anny.white完成签到,获得积分10
2秒前
科研通AI5应助平常的毛豆采纳,获得10
4秒前
SciGPT应助paul采纳,获得10
7秒前
9秒前
英姑应助书生采纳,获得10
10秒前
科研钓鱼佬完成签到,获得积分10
11秒前
13秒前
petrichor应助C_Cppp采纳,获得10
13秒前
nan完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
勤恳的雨文完成签到,获得积分10
14秒前
木森ab发布了新的文献求助10
15秒前
paul完成签到,获得积分10
15秒前
小鞋完成签到,获得积分10
16秒前
开心青旋发布了新的文献求助10
16秒前
fztnh发布了新的文献求助10
16秒前
无名花生完成签到 ,获得积分10
16秒前
18秒前
19秒前
19秒前
杜若完成签到,获得积分10
19秒前
19秒前
木森ab完成签到,获得积分20
21秒前
paul发布了新的文献求助10
22秒前
23秒前
MEME发布了新的文献求助10
26秒前
26秒前
情怀应助LSH970829采纳,获得10
26秒前
CHINA_C13发布了新的文献求助10
29秒前
Mars发布了新的文献求助10
30秒前
哈哈哈完成签到,获得积分10
30秒前
玛卡巴卡应助平常的毛豆采纳,获得100
31秒前
默默的青旋完成签到,获得积分10
32秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824