A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:28
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JustAboutEnough完成签到,获得积分10
刚刚
华大01完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
4秒前
wschenau应助陈皮糖不酸采纳,获得10
7秒前
by发布了新的文献求助10
7秒前
柏林发布了新的文献求助10
8秒前
li完成签到,获得积分10
8秒前
闾丘志泽发布了新的文献求助10
8秒前
周游发布了新的文献求助10
9秒前
heidi完成签到 ,获得积分10
12秒前
tomorrow505应助小闲闲采纳,获得10
12秒前
mmill发布了新的文献求助10
12秒前
jar7989完成签到,获得积分10
13秒前
张大大发布了新的文献求助30
14秒前
14秒前
mucheng完成签到,获得积分10
15秒前
15秒前
邢哥哥发布了新的文献求助100
19秒前
20秒前
闾丘志泽发布了新的文献求助10
27秒前
rsdggsrser完成签到,获得积分10
28秒前
29秒前
无名老大应助chendumo采纳,获得200
29秒前
辛勤大叔完成签到,获得积分10
30秒前
CipherSage应助彭凯采纳,获得10
30秒前
王馨完成签到,获得积分20
31秒前
wcy完成签到,获得积分10
31秒前
芒果完成签到,获得积分10
33秒前
凹凸先森应助白鸽鸽采纳,获得10
33秒前
34秒前
34秒前
35秒前
酪酪Alona完成签到,获得积分10
36秒前
vv完成签到,获得积分10
39秒前
ZOZO发布了新的文献求助10
39秒前
ZG完成签到,获得积分10
41秒前
搜集达人应助呼呼喵采纳,获得10
44秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329635
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594779
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443715
科研通“疑难数据库(出版商)”最低求助积分说明 668827
邀请新用户注册赠送积分活动 656261