已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小艾同学完成签到 ,获得积分20
1秒前
如意凝云发布了新的文献求助20
1秒前
2秒前
MiRoRo完成签到 ,获得积分10
2秒前
kai chen完成签到 ,获得积分0
3秒前
852应助liuniuniu采纳,获得10
4秒前
joe完成签到,获得积分10
4秒前
黑巧的融化完成签到 ,获得积分10
4秒前
miao发布了新的文献求助30
5秒前
5秒前
盐植物完成签到,获得积分10
6秒前
王木木完成签到 ,获得积分10
6秒前
康康完成签到 ,获得积分10
6秒前
三月完成签到,获得积分10
6秒前
少年锦时完成签到,获得积分10
9秒前
9秒前
彭于晏应助贾靖涵采纳,获得30
11秒前
11秒前
徐嘎嘎发布了新的文献求助10
11秒前
zhaoqing发布了新的文献求助10
12秒前
咕噜发布了新的文献求助10
13秒前
相金鹏完成签到,获得积分10
13秒前
狗十七完成签到 ,获得积分10
14秒前
白英完成签到,获得积分10
15秒前
wsw111发布了新的文献求助30
16秒前
chenllxx完成签到 ,获得积分10
17秒前
左江夜渔人完成签到 ,获得积分10
18秒前
18秒前
哈哈完成签到,获得积分10
18秒前
相金鹏发布了新的文献求助10
19秒前
xie完成签到 ,获得积分0
20秒前
一只眠羊完成签到 ,获得积分10
21秒前
22秒前
bajiu完成签到 ,获得积分10
22秒前
TiAmo完成签到,获得积分10
23秒前
哈哈发布了新的文献求助10
23秒前
灶灶完成签到 ,获得积分10
23秒前
LXL完成签到,获得积分10
26秒前
刘振坤完成签到,获得积分10
26秒前
LFYL发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004