A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Singularity采纳,获得10
刚刚
刚刚
cxz发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
DrNaz应助留胡子的雅山采纳,获得10
4秒前
echo发布了新的文献求助10
4秒前
icelatte发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
司空博涛完成签到,获得积分10
7秒前
Jasper应助Yuanyuan采纳,获得30
7秒前
啦啦啦发布了新的文献求助10
7秒前
Johnpick发布了新的文献求助10
8秒前
selfevidbet发布了新的文献求助10
8秒前
8秒前
断擒完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
zhinian完成签到 ,获得积分10
9秒前
orixero应助rain采纳,获得10
9秒前
9秒前
10秒前
11秒前
liyang999发布了新的文献求助10
11秒前
bkagyin应助yuan采纳,获得10
11秒前
12秒前
端己发布了新的文献求助10
13秒前
13秒前
taeyeon发布了新的文献求助10
13秒前
陈展峰完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Bigblackjesse发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730487
求助须知:如何正确求助?哪些是违规求助? 5323552
关于积分的说明 15318985
捐赠科研通 4876967
什么是DOI,文献DOI怎么找? 2619847
邀请新用户注册赠送积分活动 1569165
关于科研通互助平台的介绍 1525773