A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
闪闪草丛发布了新的文献求助20
1秒前
小哈完成签到 ,获得积分10
3秒前
酷酷云朵发布了新的文献求助10
3秒前
比奇堡不想上班派大星完成签到 ,获得积分10
4秒前
背后的雪卉应助冥土采纳,获得10
5秒前
5秒前
zho应助琳666采纳,获得10
6秒前
7秒前
Zr完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
维奈克拉应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得100
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
子车茗应助科研通管家采纳,获得100
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得30
8秒前
维奈克拉应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
南小木完成签到,获得积分20
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343