A Deep Learning-Based Data-Driven Approach for Predicting Mining Water Inrush From Coal Seam Floor Using Microseismic Monitoring Data

采矿工程 微震 煤矿开采 地质学 地震学 工程类 废物管理
作者
Huichao Yin,Gaizhuo Zhang,Qiang Wu,Shangxian Yin,Mohamad Reza Soltanian,Hung Vo Thanh,Zhenxue Dai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:30
标识
DOI:10.1109/tgrs.2023.3300012
摘要

Micro-seismic monitoring during mining operations generates spatiotemporal data that could indicate strata fractures and deformations leading to water inrush anomalies. However, current water inrush prediction methods face challenges from the data non-stationarity and multi-dimensionality, resulting in low prediction precision and effectiveness. This study proposes an innovative data-driven approach for predicting mining water inrush using field 3D micro-seismic monitoring data. The approach couples machine learning and deep learning models to analyze micro-seismic events, pre-processed using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the Random Sample Consensus (RANSAC) algorithms for both data denoising and water inrush risk locating. Weighting periods are analyzed in periodic variations of event attributes using the fast Fourier transform (FFT), continuous wavelet transform (CWT), empirical mode decomposition (EMD), and seasonal and trend decomposition using Loess (STL) methods. Anomalies are detected using the long short-time memory (LSTM)+absolute error (AE), isolation forest (iForest) and LSTM+iForest models. The study is conducted using a micro-seismic dataset acquired during intermittent water inflow anomalies in the Xingdong coal mine in China. The approach accurately predicts a major water inrush incident hours prior to its occurrence merging detected anomalies with the obtained weighting periods, which are also used for model calibration. Future studies could focus on performance evaluation and calibration of the deep learning models using micro-seismic datasets from different mining operations, and expanding the approach's scope by incorporating other geophysical exploration technologies like the electrical methods to further study the presence and movement of water in mines for improving mining safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gotyababy发布了新的文献求助10
刚刚
1秒前
1秒前
pakono发布了新的文献求助20
2秒前
科研通AI5应助温柔的婷采纳,获得30
2秒前
Sara发布了新的文献求助10
3秒前
斑驳发布了新的文献求助10
3秒前
秦艽发布了新的文献求助10
3秒前
乐乐应助无语的千儿采纳,获得10
3秒前
3秒前
3秒前
FashionBoy应助zifeimo采纳,获得10
3秒前
3秒前
平淡的快乐完成签到,获得积分10
3秒前
肉脸小鱼完成签到 ,获得积分10
3秒前
3秒前
英姑应助愉快迎荷采纳,获得10
4秒前
暮光不ling完成签到,获得积分10
4秒前
阳光水壶发布了新的文献求助10
4秒前
mr完成签到 ,获得积分10
5秒前
5秒前
鲨鱼辣椒发布了新的文献求助10
5秒前
6秒前
科研通AI6应助十三采纳,获得10
7秒前
李健应助hah采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
阳光青烟发布了新的文献求助10
7秒前
7秒前
Wow完成签到,获得积分10
8秒前
默默完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
缓慢的凝安完成签到 ,获得积分10
9秒前
liu发布了新的文献求助10
10秒前
10秒前
鸣笛应助机灵的盼望采纳,获得10
10秒前
谢同学发布了新的文献求助10
10秒前
zhx发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403