A novel well-logging data generation model integrated with random forests and adaptive domain clustering algorithms

聚类分析 均方误差 平均绝对百分比误差 随机森林 计算机科学 算法 稳健性(进化) 人工神经网络 卷积神经网络 数据挖掘 模式识别(心理学) 统计 人工智能 数学 生物化学 化学 基因
作者
Tianru Song,Weiyao Zhu,Zhangxin Chen,Wujun Jin,Haoran Song,Lin Fan,Ming Yue
标识
DOI:10.1016/j.geoen.2023.212381
摘要

With geological evolution, reservoirs have hierarchical properties, leading to distinct domain characteristics in their logging curves, which can contribute to the reconstruction of unknown well logging curves. In recent years, many studies have used machine learning (ML) algorithms to reconstruct logging curves without incorporating domain features, which can cause their poor performance. Since decomposing raw data into domain data can optimize an expected variance and thus improves the accuracy and robustness of ML prediction models, we propose a random-forest-adaptive-domain-clustering (RF-ADC) model to generate unknown well logging curves. First, we present an adaptive domain clustering algorithm based on gap statistics (GS) and balanced iterative reducing and clustering using hierarchies (BIRCH). With the adaptive domain clustering process, well logging curves are automatically divided into microscope domains, and their corresponding domain models are constructed. Then we utilize the random forest (RF) algorithm to generate unknown well logging curves based on domain data. Taking logging curves of a shale gas reservoir as an example, our experiments show that the proposed RF-ADC model achieves promising results. Compared with the model without clustering operation, the RF-ADC model provides superior performance with its mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) values reducing by 15.55%, 39.30%, 18.95%, and 11.43%, respectively. In addition, the predictive performance of the proposed RF-ADC model is better than that of baseline models of long short-term memory network and convolutional neural network. Furthermore, after analyzing, the GS and BIRCH methods are applicable to obtaining an optimal number of domains and decomposing well logging data for horizontal wells. Our delineation results also provide insights into detailed reservoir recognition, which is important for further identification of reservoirs and stratification work. Moreover, the proposed RF-ADC model can also achieve effective prediction with a small dataset (MAE = 8.205, RMSE = 10.922, and MAPE = 0.039). In summary, this RF-ADC model provides a fast, economical, and effective tool for the generation of unknown well logging curves for horizontal wells in shale gas reservoirs. It will further facilitate the exploration and development of unconventional reservoirs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马騳骉完成签到,获得积分10
刚刚
刚刚
whisper完成签到,获得积分10
1秒前
orixero应助典雅涵瑶采纳,获得10
1秒前
小谢完成签到,获得积分10
1秒前
孤独小震发布了新的文献求助10
2秒前
Time发布了新的文献求助10
4秒前
4秒前
思源应助soong采纳,获得10
4秒前
科研通AI2S应助11采纳,获得10
4秒前
海底月发布了新的文献求助10
5秒前
bkagyin应助积极的笑容采纳,获得10
6秒前
YTY发布了新的文献求助10
6秒前
6秒前
LYDC完成签到 ,获得积分10
6秒前
科研通AI2S应助旅行的天空采纳,获得10
7秒前
自然的沛凝完成签到,获得积分10
9秒前
ding应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
LamChem发布了新的文献求助10
10秒前
10秒前
洋山芋完成签到,获得积分10
11秒前
Min发布了新的文献求助10
11秒前
14秒前
活泼鸵鸟完成签到,获得积分20
14秒前
15秒前
咩咩羊完成签到 ,获得积分10
19秒前
白夜完成签到 ,获得积分10
19秒前
20秒前
以岸给以岸的求助进行了留言
20秒前
汉堡包应助张又蓝采纳,获得10
20秒前
21秒前
射天狼发布了新的文献求助10
21秒前
深情安青应助麦兜采纳,获得10
23秒前
可爱的函函应助温暖幻桃采纳,获得10
25秒前
Min完成签到,获得积分10
28秒前
28秒前
寻道图强应助Jeffrey采纳,获得30
29秒前
31秒前
疯狂的语兰完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919