A two-stage semi-supervised object detection method for SAR images with missing labels based on meta pseudo-labels

计算机科学 人工智能 对象(语法) 目标检测 模式识别(心理学) 图像(数学) 班级(哲学)
作者
Seung Ryeong Baek,Jaeyeon Jang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121405-121405 被引量:1
标识
DOI:10.1016/j.eswa.2023.121405
摘要

Recently, deep learning has been applied to analyze satellite images. However, applying fully supervised object detection (FSOD) is impractical because it is challenging to detect and annotate objects that are relatively small in high-resolution satellite images. In addition, most data owned by public institutions, such as military reconnaissance videos, do not contain sufficient object class label information. Therefore, the application of semi-supervised objection detection (SSOD) is more practical. The SSOD performance is often determined by generated pseudo-labels. Therefore, this study proposes a 2-stage SSOD model to generate accurate pseudo-labels. In the first stage, annotations, including the location information of unlabeled data, are detected using a modified faster R-CNN model. In the second stage, pseudo-labels of objects are additionally suggested through the meta pseudo-label method. Finally, reliable pseudo-labels are generated by comparing and combining the pseudo-labels generated in each stage, improving the SSOD model performance. Extensive experiments were conducted using the xView3 dataset provided by the U.S. Defense Innovation Unit (DIU). The proposed method performed approximately 11% better than the FSOD model, which does not learn pseudo-labels for datasets with missing labels according to the evaluation metrics proposed by the DIU covering both object detection and classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助yiqingfen采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
h_hellow发布了新的文献求助10
3秒前
白子双发布了新的文献求助10
3秒前
早早发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
korchid发布了新的文献求助20
5秒前
YanShaocheng发布了新的文献求助10
7秒前
12彡发布了新的文献求助10
8秒前
LY完成签到 ,获得积分10
8秒前
上官若男应助昀昀采纳,获得10
9秒前
10秒前
霞霞子完成签到 ,获得积分10
12秒前
caisongliang完成签到,获得积分10
12秒前
完美世界应助优雅的帅哥采纳,获得10
13秒前
烦烦烦完成签到,获得积分10
13秒前
luumuyu关注了科研通微信公众号
15秒前
TITANIUMJ关注了科研通微信公众号
16秒前
bb发布了新的文献求助10
17秒前
18秒前
18秒前
DeepLearning发布了新的文献求助10
20秒前
changping应助Maqian采纳,获得10
21秒前
syalonyui完成签到,获得积分10
21秒前
桐桐应助婷婷的大宝剑采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
派大星完成签到 ,获得积分10
23秒前
仙峰水龙发布了新的文献求助10
23秒前
杨廷友发布了新的文献求助10
24秒前
24秒前
科研通AI5应助史杜旦腾采纳,获得10
24秒前
今后应助QIQ采纳,获得10
24秒前
h_hellow完成签到,获得积分10
24秒前
小海发布了新的文献求助10
25秒前
悦耳如彤完成签到,获得积分10
25秒前
不想晚睡给不想晚睡的求助进行了留言
26秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406