A two-stage semi-supervised object detection method for SAR images with missing labels based on meta pseudo-labels

计算机科学 人工智能 对象(语法) 目标检测 模式识别(心理学) 图像(数学) 班级(哲学)
作者
Seung Ryeong Baek,Jaeyeon Jang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121405-121405 被引量:1
标识
DOI:10.1016/j.eswa.2023.121405
摘要

Recently, deep learning has been applied to analyze satellite images. However, applying fully supervised object detection (FSOD) is impractical because it is challenging to detect and annotate objects that are relatively small in high-resolution satellite images. In addition, most data owned by public institutions, such as military reconnaissance videos, do not contain sufficient object class label information. Therefore, the application of semi-supervised objection detection (SSOD) is more practical. The SSOD performance is often determined by generated pseudo-labels. Therefore, this study proposes a 2-stage SSOD model to generate accurate pseudo-labels. In the first stage, annotations, including the location information of unlabeled data, are detected using a modified faster R-CNN model. In the second stage, pseudo-labels of objects are additionally suggested through the meta pseudo-label method. Finally, reliable pseudo-labels are generated by comparing and combining the pseudo-labels generated in each stage, improving the SSOD model performance. Extensive experiments were conducted using the xView3 dataset provided by the U.S. Defense Innovation Unit (DIU). The proposed method performed approximately 11% better than the FSOD model, which does not learn pseudo-labels for datasets with missing labels according to the evaluation metrics proposed by the DIU covering both object detection and classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phyllis完成签到,获得积分10
刚刚
2秒前
种桃老总完成签到,获得积分10
2秒前
3秒前
安逸1发布了新的文献求助10
3秒前
汌舟完成签到,获得积分10
4秒前
救驾来迟完成签到,获得积分10
7秒前
薄荷蓝发布了新的文献求助10
7秒前
7秒前
7秒前
LL完成签到,获得积分10
8秒前
LL发布了新的文献求助10
10秒前
13秒前
15秒前
小杰完成签到,获得积分10
15秒前
小松鼠完成签到 ,获得积分10
15秒前
16秒前
17秒前
19秒前
楼北完成签到,获得积分10
19秒前
20秒前
CHENMILH完成签到,获得积分10
21秒前
23秒前
灵犀完成签到,获得积分10
24秒前
勇攀高峰的科研少女完成签到 ,获得积分10
24秒前
所所应助科研通管家采纳,获得10
24秒前
高大凌寒应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
大模型应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
星星完成签到,获得积分10
24秒前
机灵石头完成签到,获得积分10
25秒前
奥沙利楠完成签到,获得积分10
25秒前
26秒前
you翅膀的鱼完成签到,获得积分10
26秒前
葛三叔完成签到,获得积分20
26秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388