A Novel m7G-Related Gene Signature Predicts the Prognosis of Colon Cancer

基因 生物标志物 癌变 基因表达 RNA甲基化 甲基化 肿瘤科 计算生物学 生物 遗传学 医学 甲基转移酶
作者
Jing Chen,Yiwen Song,Guan-Zhan Liang,Zong-Jin Zhang,Xiaofeng Wen,Rui-Bing Li,Yongle Chen,Wei-Dong Pan,Xiaowen He,Tuo Hu,Zhenyu Xian
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (22): 5527-5527 被引量:2
标识
DOI:10.3390/cancers14225527
摘要

Colon cancer (CC), one of the most common malignancies worldwide, lacks an effective prognostic prediction biomarker. N7-methylguanosine (m7G) methylation is a common RNA modification type and has been proven to influence tumorigenesis. However, the correlation between m7G-related genes and CC remains unclear. The gene expression levels and clinical information of CC patients were downloaded from public databases. Twenty-nine m7G-related genes were obtained from the published literature. Via unsupervised clustering based on the expression levels of m7G-related genes, CC patients were divided into three m7G clusters. Based on differentially expressed genes (DEGs) from the above three groups, CC patients were further divided into three gene clusters. The m7G score, a prognostic model, was established using principal component analysis (PCA) based on 15 prognosis-associated m7G genes. KM curve analysis demonstrated that the overall survival rate was remarkably higher in the high-m7G score group, which was much more significant in advanced CC patients as confirmed by subgroup analysis. Correlation analysis indicated that the m7G score was associated with tumor mutational burden (TMB), PD-L1 expression, immune infiltration, and drug sensitivity. The expression level of prognosis-related m7G genes was further confirmed in human CC cell lines and samples. This study established an m7G gene-based prognostic model (m7G score), which demonstrated the important roles of m7G-related genes during CC initiation and progression. The m7G score could be a practical biomarker to predict immunotherapy response and prognosis in CC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
堂风完成签到,获得积分10
1秒前
念云完成签到,获得积分10
2秒前
何求完成签到,获得积分10
3秒前
炜博发布了新的文献求助10
3秒前
小李老博应助xmyyy采纳,获得10
3秒前
落忆完成签到 ,获得积分10
4秒前
4秒前
彻底完成签到,获得积分10
5秒前
woods完成签到,获得积分10
5秒前
sycamore完成签到,获得积分10
5秒前
犬狗狗完成签到 ,获得积分10
5秒前
小小超完成签到 ,获得积分10
7秒前
decademe完成签到,获得积分10
7秒前
包李完成签到,获得积分10
8秒前
眼睛大的松鼠完成签到 ,获得积分10
8秒前
儒雅龙完成签到 ,获得积分10
8秒前
王安娜完成签到 ,获得积分20
8秒前
心斋发布了新的文献求助10
8秒前
呵呵喊我完成签到,获得积分10
9秒前
9秒前
前排61完成签到 ,获得积分10
9秒前
阿枫完成签到,获得积分10
10秒前
xiaoqianqian174完成签到,获得积分10
11秒前
张张完成签到 ,获得积分10
12秒前
炜博完成签到,获得积分10
12秒前
WSGQT完成签到 ,获得积分10
13秒前
lzylzy完成签到,获得积分10
13秒前
凌霄完成签到 ,获得积分10
13秒前
呆萌笑晴完成签到,获得积分10
14秒前
轻爱完成签到,获得积分10
15秒前
简柠完成签到,获得积分10
15秒前
xin完成签到,获得积分10
17秒前
zhugao完成签到,获得积分10
17秒前
19秒前
20秒前
外向菲鹰完成签到,获得积分10
20秒前
yjj6809完成签到,获得积分10
21秒前
21秒前
小熊完成签到,获得积分10
21秒前
Jasmine Mai完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689