Multi-domain medical image translation generation for lung image classification based on generative adversarial networks

计算机科学 图像翻译 人工智能 翻译(生物学) 图像(数学) 领域(数学分析) 钥匙(锁) 发电机(电路理论) 医学影像学 模式识别(心理学) 图像质量 计算机视觉 数学 量子力学 基因 信使核糖核酸 生物化学 物理 数学分析 计算机安全 功率(物理) 化学
作者
Yunfeng Chen,Ya‐Lan Lin,Xiaodie Xu,Jinzhen Ding,Chuzhao Li,Yiming Zeng,Weifang Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107200-107200 被引量:19
标识
DOI:10.1016/j.cmpb.2022.107200
摘要

Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks.This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients.Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%.In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jankin发布了新的文献求助10
刚刚
刚刚
一夜轻舟完成签到,获得积分10
1秒前
ayeben发布了新的文献求助10
1秒前
笨笨烨华完成签到 ,获得积分10
2秒前
pl656完成签到,获得积分10
3秒前
动听的蛟凤完成签到,获得积分10
4秒前
Eclipse12138完成签到,获得积分10
4秒前
11发布了新的文献求助10
5秒前
dounai发布了新的文献求助10
5秒前
Zoe柑完成签到,获得积分10
5秒前
wynne完成签到 ,获得积分10
5秒前
科研通AI6.1应助且放青山远采纳,获得150
5秒前
钟金男完成签到,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
CodeCraft应助安详忆梅采纳,获得10
6秒前
7秒前
慕青应助陈征采纳,获得10
7秒前
学林书屋完成签到,获得积分10
8秒前
大个应助生气的鸡蛋采纳,获得10
8秒前
9秒前
科研通AI6.1应助沉默的驳采纳,获得10
10秒前
11秒前
GR完成签到,获得积分10
12秒前
bkagyin应助学林书屋采纳,获得10
14秒前
无花果应助hys采纳,获得10
14秒前
念一发布了新的文献求助10
14秒前
14秒前
14秒前
阿诺完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
15秒前
122319发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400