Multi-domain medical image translation generation for lung image classification based on generative adversarial networks

计算机科学 图像翻译 人工智能 翻译(生物学) 图像(数学) 领域(数学分析) 钥匙(锁) 发电机(电路理论) 医学影像学 模式识别(心理学) 图像质量 计算机视觉 数学 量子力学 基因 信使核糖核酸 生物化学 物理 数学分析 计算机安全 功率(物理) 化学
作者
Yunfeng Chen,Ya‐Lan Lin,Xiaodie Xu,Jinzhen Ding,Chuzhao Li,Yiming Zeng,Weifang Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107200-107200 被引量:17
标识
DOI:10.1016/j.cmpb.2022.107200
摘要

Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks.This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients.Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%.In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野乌冬面完成签到 ,获得积分10
1秒前
MIAOMIAO完成签到,获得积分10
1秒前
eee完成签到,获得积分10
2秒前
12秒前
月下梅发布了新的文献求助10
15秒前
2千儿完成签到 ,获得积分10
16秒前
小背包完成签到 ,获得积分10
16秒前
独特的高山完成签到 ,获得积分10
17秒前
神华完成签到 ,获得积分10
19秒前
25秒前
sdbz001完成签到,获得积分10
27秒前
娜na完成签到 ,获得积分10
29秒前
满城烟沙完成签到 ,获得积分10
33秒前
LOVER完成签到 ,获得积分10
34秒前
难过的钥匙完成签到 ,获得积分10
34秒前
liuweiwei完成签到 ,获得积分10
36秒前
jiangjiang完成签到 ,获得积分10
44秒前
眼睛大的尔竹完成签到 ,获得积分10
45秒前
汉堡包应助科研通管家采纳,获得10
46秒前
萧水白应助科研通管家采纳,获得10
46秒前
chingching完成签到,获得积分10
48秒前
狼洪明完成签到,获得积分10
49秒前
孤独黑猫完成签到 ,获得积分10
54秒前
自然亦竹完成签到,获得积分10
54秒前
研友_8RaVBZ发布了新的文献求助10
1分钟前
1分钟前
KD完成签到,获得积分10
1分钟前
jsinm-thyroid完成签到 ,获得积分10
1分钟前
KD发布了新的文献求助10
1分钟前
Ryan完成签到 ,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
manforfull完成签到,获得积分10
1分钟前
陈无敌完成签到 ,获得积分10
1分钟前
李子完成签到 ,获得积分10
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
manfullmoon完成签到,获得积分10
1分钟前
研友_8RaVBZ完成签到,获得积分10
1分钟前
芝诺的乌龟完成签到 ,获得积分10
1分钟前
柒八染完成签到 ,获得积分10
1分钟前
wx1完成签到 ,获得积分0
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211244
求助须知:如何正确求助?哪些是违规求助? 2860146
关于积分的说明 8122791
捐赠科研通 2526021
什么是DOI,文献DOI怎么找? 1359706
科研通“疑难数据库(出版商)”最低求助积分说明 643044
邀请新用户注册赠送积分活动 615059