Multi-domain medical image translation generation for lung image classification based on generative adversarial networks

计算机科学 图像翻译 人工智能 翻译(生物学) 图像(数学) 领域(数学分析) 钥匙(锁) 发电机(电路理论) 医学影像学 模式识别(心理学) 图像质量 计算机视觉 数学 量子力学 基因 信使核糖核酸 生物化学 物理 数学分析 计算机安全 功率(物理) 化学
作者
Yunfeng Chen,Ya‐Lan Lin,Xiaodie Xu,Jinzhen Ding,Chuzhao Li,Yiming Zeng,Weifang Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107200-107200 被引量:19
标识
DOI:10.1016/j.cmpb.2022.107200
摘要

Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks.This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients.Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%.In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lv完成签到,获得积分10
1秒前
1秒前
俊逸香岚完成签到,获得积分10
1秒前
fazat完成签到,获得积分20
2秒前
2秒前
与木完成签到,获得积分10
2秒前
爆米花应助SSY采纳,获得10
2秒前
3秒前
Alizmee发布了新的文献求助10
3秒前
4秒前
fazat发布了新的文献求助10
4秒前
大模型应助孙明浩采纳,获得30
4秒前
科研通AI6应助stoic采纳,获得10
4秒前
5秒前
传奇3应助emmmmmq采纳,获得10
5秒前
犹豫书瑶发布了新的文献求助10
5秒前
ZAL完成签到,获得积分10
5秒前
6秒前
7秒前
菜头完成签到,获得积分10
7秒前
我是老大应助An采纳,获得10
8秒前
夜安完成签到 ,获得积分10
8秒前
zzz发布了新的文献求助10
9秒前
9秒前
9秒前
开花发布了新的文献求助10
9秒前
浮游应助snopec采纳,获得10
9秒前
10秒前
子车茗应助无心的鹤采纳,获得20
11秒前
小人物完成签到,获得积分20
11秒前
12秒前
朝阳完成签到,获得积分10
12秒前
12秒前
13秒前
invisiable完成签到,获得积分10
13秒前
马凤杰发布了新的文献求助10
13秒前
liii发布了新的文献求助10
13秒前
bkagyin应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106