Multi-domain medical image translation generation for lung image classification based on generative adversarial networks

计算机科学 图像翻译 人工智能 翻译(生物学) 图像(数学) 领域(数学分析) 钥匙(锁) 发电机(电路理论) 医学影像学 模式识别(心理学) 图像质量 计算机视觉 数学 数学分析 生物化学 化学 信使核糖核酸 基因 功率(物理) 物理 计算机安全 量子力学
作者
Yunfeng Chen,Ya‐Lan Lin,Xiaodie Xu,Jinzhen Ding,Chuzhao Li,Yiming Zeng,Weifang Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107200-107200 被引量:19
标识
DOI:10.1016/j.cmpb.2022.107200
摘要

Lung image classification-assisted diagnosis has a large application market. Aiming at the problems of poor attention to existing translation models, the insufficient ability of key transfer and generation, insufficient quality of generated images, and lack of detailed features, this paper conducts research on lung medical image translation and lung image classification based on generative adversarial networks.This paper proposes a medical image multi-domain translation algorithm MI-GAN based on the key migration branch. After the actual analysis of the imbalanced medical image data, the key target domain images are selected, the key migration branch is established, and a single generator is used to complete the medical image multi-domain translation. The conversion between domains ensures the attention performance of the medical image multi-domain translation model and the quality of the synthesized images. At the same time, a lung image classification model based on synthetic image data augmentation is proposed. The synthetic lung CT medical images and the original real medical images are used as the training set together to study the performance of the auxiliary diagnosis model in the classification of normal healthy subjects, and also of the mild and severe COVID-19 patients.Based on the chest CT image dataset, MI-GAN has completed the mutual conversion and generation of normal lung images without disease, viral pneumonia and Mild COVID-19 images. The synthetic images GAN-test and GAN-train indicators reached, respectively 92.188% and 85.069%, compared with other generative models in terms of authenticity and diversity, there is a considerable improvement. The accuracy rate of pneumonia diagnosis of the lung image classification model is 93.85%, which is 3.1% higher than that of the diagnosis model trained only with real images; the sensitivity of disease diagnosis is 96.69%, a relative improvement of 7.1%. 1%, the specificity was 89.70%; the area under the ROC curve (AUC) increased from 94.00% to 96.17%.In this paper, a multi-domain translation model of medical images based on the key transfer branch is proposed, which enables the translation network to have key transfer and attention performance. It is verified on lung CT images and achieved good results. The required medical images are synthesized by the above medical image translation model, and the effectiveness of the synthesized images on the lung image classification network is verified experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助山山而川采纳,获得10
1秒前
小虎应助笨笨师采纳,获得10
1秒前
czc发布了新的文献求助10
1秒前
bkagyin应助专注乌冬面采纳,获得10
3秒前
一二一完成签到,获得积分10
4秒前
研友_EZ1GJL完成签到,获得积分10
4秒前
8秒前
吃花椒的喵酱完成签到,获得积分10
8秒前
666应助灵巧曼寒采纳,获得20
8秒前
耸耸完成签到 ,获得积分10
9秒前
王大壮完成签到,获得积分10
13秒前
m(_._)m完成签到 ,获得积分0
14秒前
kaiser发布了新的文献求助10
15秒前
留胡子的夜柳完成签到,获得积分20
16秒前
666应助LazyClouds采纳,获得10
16秒前
啥时候吃火锅完成签到 ,获得积分0
17秒前
wpz发布了新的文献求助50
20秒前
czc完成签到,获得积分10
20秒前
20秒前
20秒前
Garnieta完成签到,获得积分10
21秒前
壮观的叫兽完成签到,获得积分20
21秒前
斯文冷梅完成签到 ,获得积分20
21秒前
22秒前
在水一方应助TYJ采纳,获得10
23秒前
谁懂郁闷发布了新的文献求助10
25秒前
高路发布了新的文献求助10
25秒前
cc发布了新的文献求助10
27秒前
激昂的逊发布了新的文献求助10
27秒前
无花果应助壮观的叫兽采纳,获得10
28秒前
28秒前
666应助牛牛眉目采纳,获得10
28秒前
29秒前
健忘的灵槐完成签到,获得积分10
30秒前
31秒前
Leeny发布了新的文献求助10
32秒前
山山而川发布了新的文献求助10
32秒前
weiwei发布了新的文献求助10
34秒前
林一楠发布了新的文献求助20
35秒前
小步快跑完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388