Optimized single-nucleus transcriptional profiling by combinatorial indexing

计算生物学 仿形(计算机编程) 核心 计算机科学 生物 搜索引擎索引 生物信息学 细胞生物学 情报检索 操作系统
作者
Beth Martin,Chengxiang Qiu,Eva K. Nichols,M. Hoang Phung,Rula Green Gladden,Sanjay Srivatsan,Ronnie Blecher‐Gonen,Brian J. Beliveau,Cole Trapnell,Junyue Cao,Jay Shendure
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (1): 188-207 被引量:67
标识
DOI:10.1038/s41596-022-00752-0
摘要

Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) is a powerful method for recovering gene expression data from an exponentially scalable number of individual cells or nuclei. However, sci-RNA-seq is a complex protocol that has historically exhibited variable performance on different tissues, as well as lower sensitivity than alternative methods. Here, we report a simplified, optimized version of the sci-RNA-seq protocol with three rounds of split-pool indexing that is faster, more robust and more sensitive and has a higher yield than the original protocol, with reagent costs on the order of 1 cent per cell or less. The total hands-on time from nuclei isolation to final library preparation takes 2–3 d, depending on the number of samples sharing the experiment. The improvements also allow RNA profiling from tissues rich in RNases like older mouse embryos or adult tissues that were problematic for the original method. We showcase the optimized protocol via whole-organism analysis of an E16.5 mouse embryo, profiling ~380,000 nuclei in a single experiment. Finally, we introduce a ‘Tiny-Sci’ protocol for experiments in which input material is very limited. This protocol presents an optimized version of the single-cell combinatorial indexing RNA sequencing protocol that is faster, less expensive and suitable for profiling tissues rich in RNases, as well as a ‘Tiny-Sci’ protocol for limited input samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Gary发布了新的文献求助10
1秒前
1秒前
lllll发布了新的文献求助10
2秒前
852应助太叔若南采纳,获得10
2秒前
3秒前
晓山青发布了新的文献求助10
4秒前
Sience发布了新的文献求助10
5秒前
勤劳涵山发布了新的文献求助10
5秒前
Vino完成签到,获得积分10
5秒前
7秒前
WM给WM的求助进行了留言
7秒前
但是发布了新的文献求助10
8秒前
Dandy完成签到,获得积分10
8秒前
ccm应助Francis采纳,获得10
8秒前
言全发布了新的文献求助10
10秒前
乐观忆灵应助酷酷可愁采纳,获得10
10秒前
Lee完成签到,获得积分10
10秒前
12秒前
jnoker发布了新的文献求助10
12秒前
炽源完成签到,获得积分20
12秒前
小蘑菇应助阿飞采纳,获得10
13秒前
14秒前
yinhe028发布了新的文献求助10
14秒前
luffy发布了新的文献求助10
14秒前
不想做牛马的达瓦里氏完成签到,获得积分10
15秒前
今后应助ppg123采纳,获得10
16秒前
存疑完成签到 ,获得积分10
17秒前
言全完成签到,获得积分10
17秒前
WM应助Francis采纳,获得10
18秒前
毛豆应助july采纳,获得10
18秒前
霸气紫文应助晓山青采纳,获得10
20秒前
20秒前
在水一方应助典雅的俊驰采纳,获得10
20秒前
20秒前
西瓜霜完成签到 ,获得积分10
20秒前
隐形曼青应助1GE采纳,获得10
21秒前
乐观忆灵应助张叮当采纳,获得10
21秒前
小奥秘完成签到 ,获得积分10
22秒前
聪明的怜烟完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187