Early Faulty Battery Detection in Electric Vehicles Based on Self-Discharge Rate Analysis

电池(电) 可靠性工程 过程(计算) 汽车工程 计算机科学 服务(商务) 工程类 业务 功率(物理) 物理 量子力学 营销 操作系统
作者
Shubo Zhang
标识
DOI:10.54097/hset.v17i.2431
摘要

As the lithium-ion battery technology becomes mature and affordable, it has been widely adopted in transportation equipment and energy storage systems. However, there will always exist defects in the manufacturing process, even though at an extremely small percentage, that would result in the end product performing poorly and in rare cases causing safety issues. Therefore, continuous monitoring of the battery usage and early detection of battery faults become a must. This paper introduces a method to detect self-discharging, a leading phenomenon when batteries are failing, using data analytic algorithm on huge amount of run-time data from electric vehicles. The algorithm focuses on long term trend so that tiny self-discharging could be identified far ahead of it becoming much serious. The experiment on ten electric vehicles shows good results. Three abnormal self-discharging cases are detected in their early stages, ranging from 20 days to 5 months before they became serious enough to cause system malfunctions. It enables the service team to do preventative maintenance at the lowest cost, and most important of all, eliminate potential safety risks, whose value can never be over exaggerated. The method in this research can also be applied to different types of batteries and applications with only parameter adjustment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DrY发布了新的文献求助10
刚刚
careyzhou发布了新的文献求助10
1秒前
脑洞疼应助糟糕的铁锤采纳,获得10
1秒前
森林完成签到,获得积分10
1秒前
1秒前
李健应助Aiuuu采纳,获得10
1秒前
1秒前
Affiliation完成签到,获得积分10
1秒前
2秒前
2秒前
等风来完成签到,获得积分10
3秒前
3秒前
阿飞发布了新的文献求助10
3秒前
善学以致用应助qcj采纳,获得10
3秒前
Yuguang关注了科研通微信公众号
3秒前
杨yang发布了新的文献求助10
3秒前
4秒前
杜晓倩发布了新的文献求助10
4秒前
温暖采白发布了新的文献求助10
5秒前
cc发布了新的文献求助10
5秒前
5秒前
撒啊完成签到,获得积分10
5秒前
Xhhaai发布了新的文献求助10
5秒前
6秒前
科研通AI6.1应助xz采纳,获得30
6秒前
不曾留步发布了新的文献求助10
6秒前
6秒前
6秒前
张女士完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
个性的紫菜应助褚明雪采纳,获得10
7秒前
7秒前
LXL发布了新的文献求助10
7秒前
7秒前
FashionBoy应助寒冷发卡采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784182
求助须知:如何正确求助?哪些是违规求助? 5681297
关于积分的说明 15463418
捐赠科研通 4913491
什么是DOI,文献DOI怎么找? 2644676
邀请新用户注册赠送积分活动 1592532
关于科研通互助平台的介绍 1547112