Early Faulty Battery Detection in Electric Vehicles Based on Self-Discharge Rate Analysis

电池(电) 可靠性工程 过程(计算) 汽车工程 计算机科学 服务(商务) 工程类 业务 功率(物理) 量子力学 操作系统 物理 营销
作者
Shubo Zhang
标识
DOI:10.54097/hset.v17i.2431
摘要

As the lithium-ion battery technology becomes mature and affordable, it has been widely adopted in transportation equipment and energy storage systems. However, there will always exist defects in the manufacturing process, even though at an extremely small percentage, that would result in the end product performing poorly and in rare cases causing safety issues. Therefore, continuous monitoring of the battery usage and early detection of battery faults become a must. This paper introduces a method to detect self-discharging, a leading phenomenon when batteries are failing, using data analytic algorithm on huge amount of run-time data from electric vehicles. The algorithm focuses on long term trend so that tiny self-discharging could be identified far ahead of it becoming much serious. The experiment on ten electric vehicles shows good results. Three abnormal self-discharging cases are detected in their early stages, ranging from 20 days to 5 months before they became serious enough to cause system malfunctions. It enables the service team to do preventative maintenance at the lowest cost, and most important of all, eliminate potential safety risks, whose value can never be over exaggerated. The method in this research can also be applied to different types of batteries and applications with only parameter adjustment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CR7应助科研通管家采纳,获得20
刚刚
快乐滑板应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
慕青应助wxh采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
nemo完成签到,获得积分10
1秒前
1秒前
泛舟发布了新的文献求助10
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
nuaa_shy应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
162发布了新的文献求助10
2秒前
酷炫涛发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ZZG应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
思源应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
小墩墩发布了新的文献求助10
3秒前
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
CR7应助科研通管家采纳,获得20
3秒前
慕青应助科研通管家采纳,获得10
3秒前
CR7应助科研通管家采纳,获得20
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784