Regulating Phase Transition and Restraining Fe Distortion at High Potential Window via Rare Earth Metal Incorporation on O3‐Type Layered Cathodes

材料科学 稀土 失真(音乐) 阴极 过渡金属 相变 相(物质) 窗口(计算) 金属 类型(生物学) 化学物理 纳米技术 光电子学 凝聚态物理 冶金 物理化学 物理 催化作用 操作系统 有机化学 化学 生物 放大器 生物化学 CMOS芯片 计算机科学 生态学
作者
Ningyun Hong,Jianwei Li,Haoji Wang,Xinyu Hu,Bin Zhao,Fang Hua,Yu Mei,Jiangnan Huang,Baichao Zhang,Weishun Jian,Jinqiang Gao,Yuan Tian,Xixi Shi,Wentao Deng,Guoqiang Zou,Hongshuai Hou,Zhanggui Hu,Zhen Long,Xiaobo Ji
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (37) 被引量:83
标识
DOI:10.1002/adfm.202402398
摘要

Abstract Rapid capacity fading and structural collapse, along with other deep‐rooted challenges in the high‐voltage region, are insufficient to meet the requirements for commercial applications of O3‐type layered cathodes. Hereby, rare earth metal (RE) within the IIIB group are utilized as the robust dopants for O3‐NaNi 1/3 Fe 1/3 Mn 1/3 O 2 (NFM) to achieve the purpose of reconstructing the crystal lattice and regulating the interlayer structure. The inactive RE 3+ acts as a pillar, reinforces the TMO 6 octahedron, and broadens the Na + diffusion layer in the configuration of O‐Na‐O‐TM (RE)‐O‐Na‐O, giving rise to the enhanced crystal stability and accelerating the transmission of sodium ions. More impressively, the scandium incorporation is working as a “vitamin” that improves Ni/Fe redox reversibility, alleviating the irreversible P3‐O3’‐P3’ phase transformation and further restraining the disordered Fe migration into the neighboring Na layer, which is firmly validated by in situ X‐ray diffraction coupled with the synchrotron X‐ray absorption spectroscopy. Consequently, the as‐designed NFM‐Sc exhibits impressive rate capability (82.5 mAh g −1 at 10 C) and excellent cycle stability with 80.2% capacity retention after 500 cycles at the high voltage of 4.2 V. Given this, the elaborate work may shed new insight into the operational mechanism of rare metal through strategically regulating the structure for sodium‐ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
JiA完成签到,获得积分10
刚刚
小任完成签到,获得积分10
1秒前
果粒橙发布了新的文献求助10
1秒前
斯文败类应助麻辣老妖婆采纳,获得10
1秒前
花飞飞凡发布了新的文献求助10
1秒前
温暖静柏完成签到,获得积分20
2秒前
2秒前
科研通AI6应助myt采纳,获得10
2秒前
zhanng发布了新的文献求助10
3秒前
奇遇里发布了新的文献求助10
3秒前
李健的小迷弟应助承乐采纳,获得30
4秒前
小马甲应助Jian采纳,获得10
4秒前
卢秋宇完成签到,获得积分20
5秒前
叶子完成签到,获得积分10
5秒前
瞿琼瑶发布了新的文献求助80
6秒前
6秒前
苦苦发布了新的文献求助10
6秒前
6秒前
7秒前
华仔应助多情以山采纳,获得10
7秒前
奔跑西木发布了新的文献求助10
7秒前
7秒前
雨天有伞完成签到,获得积分10
8秒前
ZOLEI完成签到,获得积分10
8秒前
9秒前
超级万声发布了新的文献求助30
9秒前
执着蓝发布了新的文献求助10
9秒前
迷路巧曼完成签到,获得积分20
10秒前
害羞鬼发布了新的文献求助10
11秒前
11秒前
Giannis完成签到,获得积分20
12秒前
超级翠完成签到,获得积分10
12秒前
hzl发布了新的文献求助10
12秒前
12秒前
Aprilapple发布了新的文献求助10
12秒前
嘎嘎发布了新的文献求助20
13秒前
Echo_枕星完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836