亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stacking ensemble learning for gas sensor‐based detection of salmon freshness and shelf life

保质期 计算机科学 食物腐败 堆积 人工智能 机器学习 集成学习 算法 笼状水合物 环境科学 工艺工程 化学 食品科学 地质学 工程类 水合物 有机化学 古生物学 细菌
作者
Buwen Liang,Xinxing Li,Mingsong Yang,Ziyi Zhang,Jie Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (3) 被引量:13
标识
DOI:10.1111/jfpe.14593
摘要

Abstract Salmon, celebrated for its nutrition and flavor, suffers rapid degradation in freshness due to prolonged transportation and storage, offering a haven for microorganisms. Addressing the escalating need for safe, fresh fish consumption, we probed conventional chemical and physical indicators like total volatile basic nitrogen (TVB‐N), pH, texture profile analysis (TPA), and chromaticity across varying temperature intervals, linking these with gas sensors to identify sensitive sensor arrays. Importantly, an ensemble learning strategy for gas sensors, synthesizing the benefits of Linear, SVR, MLP, KNN, Gaussian Process, and decision tree algorithms, was employed for prompt and precise detection of salmon freshness and shelf‐life. Notably, the results demonstrated that gas sensors exhibited strong correlations, surpassing .8 for TVB‐N and .5 for shelf life, underscoring their aptitude for detecting salmon spoilage gas. Additionally, ensemble learning outperformed singular machine learning algorithms, with stacking emerging preeminent, achieving R 2 values of .851 and .871, and MSEs of .120 and 1.573, for TVB‐N and shelf‐life detection, respectively. In summation, this study introduces an avant‐garde mechanism that amplifies the detection efficacy of gas sensors for salmon freshness, marrying them with stacking ensemble learning paradigms for cost‐effective and efficient determinations. In conclusion, we devised a novel method to augment the detection efficacy of gas sensors for salmon freshness. By integrating these sensors with stacking ensemble learning algorithms, we achieved a data‐driven, cost‐effective, and efficient approach, fulfilling the requirements of salmon freshness detection. Practical applications Most existing gas sensors gas sensors predominantly employ singular machine learning methodologies, often limiting them to a sole freshness evaluation metric during assessments. This study introduces a pioneering approach using a stacking ensemble learning‐based gas sensor capable of concurrently assessing both TVB‐N and the shelf life of salmon. By discerning the correlations between freshness indices and gas sensor readings to pinpoint sensitive sensor arrays, we harnessed ensemble learning. This integrates the strengths of linear, SVR, MLP, KNN, Gaussian process, and decision tree models to enhance detection of freshness indicators. Notably, this advancement amplifies the sensor's efficacy in salmon detection solely through model optimization, bypassing the need to reconsider sensor materials and signal transmission pathways. Collectively, our findings present a cost‐effective and optimized strategy to elevate the performance of gas sensors in detecting salmon freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
xxxgggppp发布了新的文献求助10
6秒前
清爽冬莲完成签到 ,获得积分0
7秒前
ST发布了新的文献求助10
7秒前
blue完成签到 ,获得积分10
8秒前
白告完成签到,获得积分10
14秒前
ST完成签到,获得积分10
18秒前
21秒前
27秒前
四夕完成签到 ,获得积分10
29秒前
cm发布了新的文献求助10
33秒前
春天的粥完成签到 ,获得积分10
38秒前
xxxgggppp完成签到,获得积分20
39秒前
不安听露完成签到 ,获得积分10
41秒前
新斯的明的明完成签到 ,获得积分10
42秒前
飘逸惠完成签到,获得积分10
43秒前
SamSimple完成签到,获得积分10
45秒前
刘MTY完成签到 ,获得积分10
52秒前
53秒前
cm完成签到,获得积分10
56秒前
汉堡包应助老实的文龙采纳,获得10
57秒前
1分钟前
蛋仔发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
pay发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
星驰完成签到 ,获得积分10
1分钟前
北陌完成签到 ,获得积分10
1分钟前
合适的初蓝完成签到 ,获得积分10
1分钟前
histamin完成签到,获得积分10
1分钟前
李同学发布了新的文献求助10
1分钟前
AQI发布了新的文献求助10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
Zz完成签到 ,获得积分10
1分钟前
独特的醉山关注了科研通微信公众号
1分钟前
西格玛完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754595
求助须知:如何正确求助?哪些是违规求助? 5487917
关于积分的说明 15380281
捐赠科研通 4893160
什么是DOI,文献DOI怎么找? 2631746
邀请新用户注册赠送积分活动 1579693
关于科研通互助平台的介绍 1535417