Stacking ensemble learning for gas sensor‐based detection of salmon freshness and shelf life

保质期 计算机科学 食物腐败 堆积 人工智能 机器学习 集成学习 算法 笼状水合物 环境科学 工艺工程 化学 食品科学 地质学 工程类 水合物 有机化学 古生物学 细菌
作者
Buwen Liang,Xinxing Li,Mingsong Yang,Ziyi Zhang,Jie Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (3) 被引量:13
标识
DOI:10.1111/jfpe.14593
摘要

Abstract Salmon, celebrated for its nutrition and flavor, suffers rapid degradation in freshness due to prolonged transportation and storage, offering a haven for microorganisms. Addressing the escalating need for safe, fresh fish consumption, we probed conventional chemical and physical indicators like total volatile basic nitrogen (TVB‐N), pH, texture profile analysis (TPA), and chromaticity across varying temperature intervals, linking these with gas sensors to identify sensitive sensor arrays. Importantly, an ensemble learning strategy for gas sensors, synthesizing the benefits of Linear, SVR, MLP, KNN, Gaussian Process, and decision tree algorithms, was employed for prompt and precise detection of salmon freshness and shelf‐life. Notably, the results demonstrated that gas sensors exhibited strong correlations, surpassing .8 for TVB‐N and .5 for shelf life, underscoring their aptitude for detecting salmon spoilage gas. Additionally, ensemble learning outperformed singular machine learning algorithms, with stacking emerging preeminent, achieving R 2 values of .851 and .871, and MSEs of .120 and 1.573, for TVB‐N and shelf‐life detection, respectively. In summation, this study introduces an avant‐garde mechanism that amplifies the detection efficacy of gas sensors for salmon freshness, marrying them with stacking ensemble learning paradigms for cost‐effective and efficient determinations. In conclusion, we devised a novel method to augment the detection efficacy of gas sensors for salmon freshness. By integrating these sensors with stacking ensemble learning algorithms, we achieved a data‐driven, cost‐effective, and efficient approach, fulfilling the requirements of salmon freshness detection. Practical applications Most existing gas sensors gas sensors predominantly employ singular machine learning methodologies, often limiting them to a sole freshness evaluation metric during assessments. This study introduces a pioneering approach using a stacking ensemble learning‐based gas sensor capable of concurrently assessing both TVB‐N and the shelf life of salmon. By discerning the correlations between freshness indices and gas sensor readings to pinpoint sensitive sensor arrays, we harnessed ensemble learning. This integrates the strengths of linear, SVR, MLP, KNN, Gaussian process, and decision tree models to enhance detection of freshness indicators. Notably, this advancement amplifies the sensor's efficacy in salmon detection solely through model optimization, bypassing the need to reconsider sensor materials and signal transmission pathways. Collectively, our findings present a cost‐effective and optimized strategy to elevate the performance of gas sensors in detecting salmon freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuMingyang发布了新的文献求助10
1秒前
2秒前
传奇3应助年年年年采纳,获得10
3秒前
小武完成签到,获得积分10
4秒前
4秒前
LX完成签到,获得积分10
4秒前
Mangooo完成签到,获得积分10
4秒前
猫猫无敌完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
聪明帅哥发布了新的文献求助10
5秒前
skycool发布了新的文献求助10
5秒前
5秒前
回复对方完成签到,获得积分10
6秒前
6秒前
理li发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
7秒前
果称完成签到,获得积分10
7秒前
ZS驳回了Akim应助
8秒前
猫猫无敌发布了新的文献求助10
8秒前
9秒前
朴素八宝粥完成签到,获得积分10
9秒前
10秒前
完美世界应助余泽楷采纳,获得10
10秒前
苦行僧发布了新的文献求助30
11秒前
甄昕发布了新的文献求助10
11秒前
11秒前
852应助skycool采纳,获得10
11秒前
12秒前
笨笨凡松完成签到,获得积分10
12秒前
滴答完成签到 ,获得积分10
12秒前
负责雨安发布了新的文献求助10
12秒前
13秒前
路过蜻蜓完成签到,获得积分10
13秒前
13秒前
年年年年发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400