Stacking ensemble learning for gas sensor‐based detection of salmon freshness and shelf life

保质期 计算机科学 食物腐败 堆积 人工智能 机器学习 集成学习 算法 笼状水合物 环境科学 工艺工程 化学 食品科学 地质学 工程类 水合物 有机化学 古生物学 细菌
作者
Buwen Liang,Xinxing Li,Mingsong Yang,Ziyi Zhang,Jie Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (3) 被引量:4
标识
DOI:10.1111/jfpe.14593
摘要

Abstract Salmon, celebrated for its nutrition and flavor, suffers rapid degradation in freshness due to prolonged transportation and storage, offering a haven for microorganisms. Addressing the escalating need for safe, fresh fish consumption, we probed conventional chemical and physical indicators like total volatile basic nitrogen (TVB‐N), pH, texture profile analysis (TPA), and chromaticity across varying temperature intervals, linking these with gas sensors to identify sensitive sensor arrays. Importantly, an ensemble learning strategy for gas sensors, synthesizing the benefits of Linear, SVR, MLP, KNN, Gaussian Process, and decision tree algorithms, was employed for prompt and precise detection of salmon freshness and shelf‐life. Notably, the results demonstrated that gas sensors exhibited strong correlations, surpassing .8 for TVB‐N and .5 for shelf life, underscoring their aptitude for detecting salmon spoilage gas. Additionally, ensemble learning outperformed singular machine learning algorithms, with stacking emerging preeminent, achieving R 2 values of .851 and .871, and MSEs of .120 and 1.573, for TVB‐N and shelf‐life detection, respectively. In summation, this study introduces an avant‐garde mechanism that amplifies the detection efficacy of gas sensors for salmon freshness, marrying them with stacking ensemble learning paradigms for cost‐effective and efficient determinations. In conclusion, we devised a novel method to augment the detection efficacy of gas sensors for salmon freshness. By integrating these sensors with stacking ensemble learning algorithms, we achieved a data‐driven, cost‐effective, and efficient approach, fulfilling the requirements of salmon freshness detection. Practical applications Most existing gas sensors gas sensors predominantly employ singular machine learning methodologies, often limiting them to a sole freshness evaluation metric during assessments. This study introduces a pioneering approach using a stacking ensemble learning‐based gas sensor capable of concurrently assessing both TVB‐N and the shelf life of salmon. By discerning the correlations between freshness indices and gas sensor readings to pinpoint sensitive sensor arrays, we harnessed ensemble learning. This integrates the strengths of linear, SVR, MLP, KNN, Gaussian process, and decision tree models to enhance detection of freshness indicators. Notably, this advancement amplifies the sensor's efficacy in salmon detection solely through model optimization, bypassing the need to reconsider sensor materials and signal transmission pathways. Collectively, our findings present a cost‐effective and optimized strategy to elevate the performance of gas sensors in detecting salmon freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠木完成签到 ,获得积分10
刚刚
系统提示发布了新的文献求助10
刚刚
marigold完成签到,获得积分10
刚刚
Gaoge完成签到,获得积分10
1秒前
愉快的无招完成签到,获得积分10
1秒前
1秒前
HEIKU应助习习采纳,获得10
2秒前
2秒前
2秒前
2秒前
合适苗条完成签到,获得积分10
2秒前
Zn应助开水泡饼采纳,获得10
2秒前
科目三应助Liu采纳,获得10
3秒前
3秒前
eating完成签到,获得积分10
3秒前
李双艳完成签到,获得积分10
3秒前
英姑应助科研混子采纳,获得10
3秒前
li完成签到,获得积分10
4秒前
Hungrylunch应助woshiwuziq采纳,获得20
5秒前
合适苗条发布了新的文献求助10
5秒前
安静听白发布了新的文献求助10
5秒前
krystal发布了新的文献求助10
5秒前
6秒前
15122303完成签到,获得积分10
6秒前
lht完成签到 ,获得积分10
7秒前
传奇3应助纯真电源采纳,获得10
7秒前
环走鱼尾纹完成签到 ,获得积分10
7秒前
xiuxiu_27发布了新的文献求助10
8秒前
222完成签到,获得积分10
8秒前
zyz1132完成签到,获得积分10
8秒前
何处芳歇完成签到,获得积分10
9秒前
9秒前
LXYang完成签到,获得积分10
9秒前
9秒前
LL完成签到,获得积分10
9秒前
10秒前
10秒前
十月发布了新的文献求助20
11秒前
11秒前
针地很不戳完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678