Stacking ensemble learning for gas sensor‐based detection of salmon freshness and shelf life

保质期 计算机科学 食物腐败 堆积 人工智能 机器学习 集成学习 算法 笼状水合物 环境科学 工艺工程 化学 食品科学 地质学 工程类 水合物 有机化学 古生物学 细菌
作者
Buwen Liang,Xinxing Li,Mingsong Yang,Ziyi Zhang,Jie Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (3) 被引量:6
标识
DOI:10.1111/jfpe.14593
摘要

Abstract Salmon, celebrated for its nutrition and flavor, suffers rapid degradation in freshness due to prolonged transportation and storage, offering a haven for microorganisms. Addressing the escalating need for safe, fresh fish consumption, we probed conventional chemical and physical indicators like total volatile basic nitrogen (TVB‐N), pH, texture profile analysis (TPA), and chromaticity across varying temperature intervals, linking these with gas sensors to identify sensitive sensor arrays. Importantly, an ensemble learning strategy for gas sensors, synthesizing the benefits of Linear, SVR, MLP, KNN, Gaussian Process, and decision tree algorithms, was employed for prompt and precise detection of salmon freshness and shelf‐life. Notably, the results demonstrated that gas sensors exhibited strong correlations, surpassing .8 for TVB‐N and .5 for shelf life, underscoring their aptitude for detecting salmon spoilage gas. Additionally, ensemble learning outperformed singular machine learning algorithms, with stacking emerging preeminent, achieving R 2 values of .851 and .871, and MSEs of .120 and 1.573, for TVB‐N and shelf‐life detection, respectively. In summation, this study introduces an avant‐garde mechanism that amplifies the detection efficacy of gas sensors for salmon freshness, marrying them with stacking ensemble learning paradigms for cost‐effective and efficient determinations. In conclusion, we devised a novel method to augment the detection efficacy of gas sensors for salmon freshness. By integrating these sensors with stacking ensemble learning algorithms, we achieved a data‐driven, cost‐effective, and efficient approach, fulfilling the requirements of salmon freshness detection. Practical applications Most existing gas sensors gas sensors predominantly employ singular machine learning methodologies, often limiting them to a sole freshness evaluation metric during assessments. This study introduces a pioneering approach using a stacking ensemble learning‐based gas sensor capable of concurrently assessing both TVB‐N and the shelf life of salmon. By discerning the correlations between freshness indices and gas sensor readings to pinpoint sensitive sensor arrays, we harnessed ensemble learning. This integrates the strengths of linear, SVR, MLP, KNN, Gaussian process, and decision tree models to enhance detection of freshness indicators. Notably, this advancement amplifies the sensor's efficacy in salmon detection solely through model optimization, bypassing the need to reconsider sensor materials and signal transmission pathways. Collectively, our findings present a cost‐effective and optimized strategy to elevate the performance of gas sensors in detecting salmon freshness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
奥特波顿发布了新的文献求助10
3秒前
星辰坠于海完成签到,获得积分0
3秒前
科研小白发布了新的文献求助10
3秒前
4秒前
范春艳发布了新的文献求助20
4秒前
5秒前
wanci应助陈元元K采纳,获得10
6秒前
clueless完成签到,获得积分10
7秒前
ZTT完成签到,获得积分10
8秒前
8秒前
CCC发布了新的文献求助10
8秒前
沉默无极完成签到,获得积分10
8秒前
饭先生发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
zjm完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
深情安青应助俭朴的白羊采纳,获得10
12秒前
邹雄辉完成签到,获得积分20
13秒前
吴桐发布了新的文献求助30
13秒前
李爱国应助林新宇采纳,获得10
13秒前
痛米发布了新的文献求助10
14秒前
Goyounjung完成签到,获得积分10
15秒前
15秒前
芋圆应助未来采纳,获得10
15秒前
吴宁琳发布了新的文献求助10
15秒前
王国林发布了新的文献求助10
16秒前
kxm发布了新的文献求助10
20秒前
小冰发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
最好发布了新的文献求助10
23秒前
23秒前
SciGPT应助不行就相比较采纳,获得10
23秒前
林新宇发布了新的文献求助10
25秒前
helong完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492015
求助须知:如何正确求助?哪些是违规求助? 4590341
关于积分的说明 14429956
捐赠科研通 4522637
什么是DOI,文献DOI怎么找? 2477973
邀请新用户注册赠送积分活动 1463038
关于科研通互助平台的介绍 1435723