已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stacking ensemble learning for gas sensor‐based detection of salmon freshness and shelf life

保质期 计算机科学 食物腐败 堆积 人工智能 机器学习 集成学习 算法 笼状水合物 环境科学 工艺工程 化学 食品科学 地质学 工程类 水合物 有机化学 古生物学 细菌
作者
Buwen Liang,Xinxing Li,Mingsong Yang,Ziyi Zhang,Jie Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (3) 被引量:4
标识
DOI:10.1111/jfpe.14593
摘要

Abstract Salmon, celebrated for its nutrition and flavor, suffers rapid degradation in freshness due to prolonged transportation and storage, offering a haven for microorganisms. Addressing the escalating need for safe, fresh fish consumption, we probed conventional chemical and physical indicators like total volatile basic nitrogen (TVB‐N), pH, texture profile analysis (TPA), and chromaticity across varying temperature intervals, linking these with gas sensors to identify sensitive sensor arrays. Importantly, an ensemble learning strategy for gas sensors, synthesizing the benefits of Linear, SVR, MLP, KNN, Gaussian Process, and decision tree algorithms, was employed for prompt and precise detection of salmon freshness and shelf‐life. Notably, the results demonstrated that gas sensors exhibited strong correlations, surpassing .8 for TVB‐N and .5 for shelf life, underscoring their aptitude for detecting salmon spoilage gas. Additionally, ensemble learning outperformed singular machine learning algorithms, with stacking emerging preeminent, achieving R 2 values of .851 and .871, and MSEs of .120 and 1.573, for TVB‐N and shelf‐life detection, respectively. In summation, this study introduces an avant‐garde mechanism that amplifies the detection efficacy of gas sensors for salmon freshness, marrying them with stacking ensemble learning paradigms for cost‐effective and efficient determinations. In conclusion, we devised a novel method to augment the detection efficacy of gas sensors for salmon freshness. By integrating these sensors with stacking ensemble learning algorithms, we achieved a data‐driven, cost‐effective, and efficient approach, fulfilling the requirements of salmon freshness detection. Practical applications Most existing gas sensors gas sensors predominantly employ singular machine learning methodologies, often limiting them to a sole freshness evaluation metric during assessments. This study introduces a pioneering approach using a stacking ensemble learning‐based gas sensor capable of concurrently assessing both TVB‐N and the shelf life of salmon. By discerning the correlations between freshness indices and gas sensor readings to pinpoint sensitive sensor arrays, we harnessed ensemble learning. This integrates the strengths of linear, SVR, MLP, KNN, Gaussian process, and decision tree models to enhance detection of freshness indicators. Notably, this advancement amplifies the sensor's efficacy in salmon detection solely through model optimization, bypassing the need to reconsider sensor materials and signal transmission pathways. Collectively, our findings present a cost‐effective and optimized strategy to elevate the performance of gas sensors in detecting salmon freshness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文绿凝完成签到,获得积分10
刚刚
852应助褚人达采纳,获得10
5秒前
情怀应助峰feng采纳,获得10
8秒前
11秒前
杨贵严完成签到 ,获得积分10
11秒前
杨伊森发布了新的文献求助10
13秒前
14秒前
15秒前
褚人达发布了新的文献求助10
18秒前
LY_Qin完成签到,获得积分10
18秒前
峰feng发布了新的文献求助10
22秒前
Binbin完成签到 ,获得积分10
24秒前
褚人达完成签到,获得积分10
26秒前
27秒前
31秒前
ttttttttt完成签到 ,获得积分10
34秒前
FashionBoy应助调皮的小鸽子采纳,获得30
38秒前
程住气完成签到 ,获得积分10
39秒前
53秒前
54秒前
Hello应助康康采纳,获得10
57秒前
1分钟前
111完成签到 ,获得积分10
1分钟前
1分钟前
zhangqin发布了新的文献求助10
1分钟前
星际舟完成签到,获得积分10
1分钟前
大林发布了新的文献求助10
1分钟前
Polymer72应助zhangqin采纳,获得10
1分钟前
希望天下0贩的0应助大林采纳,获得10
1分钟前
1分钟前
futianyu完成签到 ,获得积分0
1分钟前
找文献完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助阔达岂愈采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得20
1分钟前
wax应助科研通管家采纳,获得10
1分钟前
落寞书易完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344077
求助须知:如何正确求助?哪些是违规求助? 2971136
关于积分的说明 8646583
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451703
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661785