Towards Robust Rumor Detection with Graph Contrastive and Curriculum Learning

谣言 计算机科学 图形 课程 人工智能 机器学习 自然语言处理 心理学 理论计算机科学 政治学 教育学 公共关系
作者
Wen-Ming Zhuang,Chih-Yao Chen,Cheng-Te Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3653023
摘要

Establishing a robust rumor detection model is vital in safeguarding the veracity of information on social media platforms. However, existing approaches to stopping rumor from spreading rely on abundant and clean training data, which is rarely available in real-world scenarios. In this work, we aim to develop a trustworthy rumor detection model that can handle inadequate and noisy labeled data. Our work addresses robust rumor detection, including classic and early detection, as well as five types of robustness issues: noisy and incomplete propagation, label scarcity and noise, and user disappearance. We propose a novel method, Robustness-Enhanced Rumor Detection (RERD), which mainly leverages the information propagation graphs of source tweets, along with user profiles and retweeting knowledge, for model learning. The novelty of RERD is four-fold. First, we jointly exploit the propagation structures of non-text and text retweets to learn the representation of a source tweet. Second, we simultaneously utilize the top-down and bottom-up information flows with relational propagations for graph representation learning. Third, to have effective early and robust detection, we implement contrastive learning on graphs with early and complete views of information propagation so that small snapshots can foresee their future shapes. Last, we use curriculum pseudo-labeling to mitigate the impact of label scarcity and noisy labels, and to correct representations learned from corrupted data. Experimental results on three benchmark datasets demonstrate that RERD consistently outperforms competitors in classic, early, and robust rumor detection scenarios. To the best of our knowledge, we are the first to simultaneously cope with early and five robust detections of rumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
大模型应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
fei应助科研通管家采纳,获得10
刚刚
ccm应助科研通管家采纳,获得10
刚刚
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
嘟噜嘟噜应助科研通管家采纳,获得10
1秒前
孟器应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
tmemory完成签到,获得积分10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
王昭发布了新的文献求助10
1秒前
Lindsay应助科研通管家采纳,获得10
2秒前
David完成签到 ,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
热情的衫应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
ethan应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
谦让涵菡完成签到 ,获得积分10
2秒前
浮浮世世发布了新的文献求助30
3秒前
4秒前
科研通AI6应助xiang采纳,获得10
5秒前
7秒前
10秒前
10秒前
胡桃完成签到,获得积分10
10秒前
ll完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499066
求助须知:如何正确求助?哪些是违规求助? 4596051
关于积分的说明 14451981
捐赠科研通 4529162
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465842
关于科研通互助平台的介绍 1438777