Towards Robust Rumor Detection with Graph Contrastive and Curriculum Learning

谣言 计算机科学 图形 课程 人工智能 机器学习 自然语言处理 心理学 理论计算机科学 政治学 教育学 公共关系
作者
Wen-Ming Zhuang,Chih-Yao Chen,Cheng-Te Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3653023
摘要

Establishing a robust rumor detection model is vital in safeguarding the veracity of information on social media platforms. However, existing approaches to stopping rumor from spreading rely on abundant and clean training data, which is rarely available in real-world scenarios. In this work, we aim to develop a trustworthy rumor detection model that can handle inadequate and noisy labeled data. Our work addresses robust rumor detection, including classic and early detection, as well as five types of robustness issues: noisy and incomplete propagation, label scarcity and noise, and user disappearance. We propose a novel method, Robustness-Enhanced Rumor Detection (RERD), which mainly leverages the information propagation graphs of source tweets, along with user profiles and retweeting knowledge, for model learning. The novelty of RERD is four-fold. First, we jointly exploit the propagation structures of non-text and text retweets to learn the representation of a source tweet. Second, we simultaneously utilize the top-down and bottom-up information flows with relational propagations for graph representation learning. Third, to have effective early and robust detection, we implement contrastive learning on graphs with early and complete views of information propagation so that small snapshots can foresee their future shapes. Last, we use curriculum pseudo-labeling to mitigate the impact of label scarcity and noisy labels, and to correct representations learned from corrupted data. Experimental results on three benchmark datasets demonstrate that RERD consistently outperforms competitors in classic, early, and robust rumor detection scenarios. To the best of our knowledge, we are the first to simultaneously cope with early and five robust detections of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
iFan完成签到 ,获得积分10
2秒前
小鱼儿发布了新的文献求助10
3秒前
zhangyafei发布了新的文献求助30
4秒前
粗心的雅绿关注了科研通微信公众号
4秒前
4秒前
zhongjian发布了新的文献求助10
4秒前
罗大壮发布了新的文献求助10
5秒前
Hello应助ninini采纳,获得10
6秒前
慕青应助fenmiao采纳,获得10
6秒前
aa发布了新的文献求助10
7秒前
7秒前
orixero应助zhang采纳,获得10
7秒前
8秒前
9秒前
毕襄发布了新的文献求助10
9秒前
10秒前
11秒前
戴衡霞完成签到,获得积分10
11秒前
今后应助安徒采纳,获得10
12秒前
wanzixian发布了新的文献求助10
12秒前
Han.T完成签到,获得积分10
13秒前
tianmeiling发布了新的文献求助10
13秒前
adding发布了新的文献求助10
13秒前
单映菱发布了新的文献求助10
14秒前
14秒前
14秒前
康康发布了新的文献求助10
15秒前
15秒前
赘婿应助武雨寒采纳,获得10
16秒前
17秒前
EMMA完成签到,获得积分10
17秒前
要减肥发布了新的文献求助10
17秒前
zhangyafei完成签到,获得积分10
17秒前
20秒前
EMMA发布了新的文献求助10
20秒前
科研通AI5应助海燕采纳,获得10
21秒前
luf完成签到,获得积分10
22秒前
大方的蓝发布了新的文献求助10
26秒前
NexusExplorer应助小小怪下士采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528