Towards Robust Rumor Detection with Graph Contrastive and Curriculum Learning

谣言 计算机科学 图形 课程 人工智能 机器学习 自然语言处理 心理学 理论计算机科学 政治学 教育学 公共关系
作者
Wen-Ming Zhuang,Chih-Yao Chen,Cheng-Te Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3653023
摘要

Establishing a robust rumor detection model is vital in safeguarding the veracity of information on social media platforms. However, existing approaches to stopping rumor from spreading rely on abundant and clean training data, which is rarely available in real-world scenarios. In this work, we aim to develop a trustworthy rumor detection model that can handle inadequate and noisy labeled data. Our work addresses robust rumor detection, including classic and early detection, as well as five types of robustness issues: noisy and incomplete propagation, label scarcity and noise, and user disappearance. We propose a novel method, Robustness-Enhanced Rumor Detection (RERD), which mainly leverages the information propagation graphs of source tweets, along with user profiles and retweeting knowledge, for model learning. The novelty of RERD is four-fold. First, we jointly exploit the propagation structures of non-text and text retweets to learn the representation of a source tweet. Second, we simultaneously utilize the top-down and bottom-up information flows with relational propagations for graph representation learning. Third, to have effective early and robust detection, we implement contrastive learning on graphs with early and complete views of information propagation so that small snapshots can foresee their future shapes. Last, we use curriculum pseudo-labeling to mitigate the impact of label scarcity and noisy labels, and to correct representations learned from corrupted data. Experimental results on three benchmark datasets demonstrate that RERD consistently outperforms competitors in classic, early, and robust rumor detection scenarios. To the best of our knowledge, we are the first to simultaneously cope with early and five robust detections of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助10
1秒前
善学以致用应助陈俊辉采纳,获得10
1秒前
~~完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助哆啦B梦采纳,获得10
5秒前
CipherSage应助zhaozhuangming采纳,获得10
5秒前
理工发布了新的文献求助10
5秒前
程破茧完成签到,获得积分10
6秒前
mihumihu完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
田様应助麦可采纳,获得10
10秒前
好好学习发布了新的文献求助30
10秒前
陈俊辉发布了新的文献求助10
13秒前
16秒前
16秒前
16秒前
丘比特应助通~采纳,获得50
18秒前
19秒前
19秒前
秋天的向日葵完成签到 ,获得积分10
19秒前
852应助陈俊辉采纳,获得10
19秒前
yar应助理工采纳,获得10
19秒前
小其发布了新的文献求助10
20秒前
sln发布了新的文献求助10
20秒前
Z趋势完成签到,获得积分10
20秒前
21秒前
嗯qq发布了新的文献求助10
21秒前
shencheng完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
24秒前
小其完成签到,获得积分10
25秒前
26秒前
28秒前
29秒前
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269548
求助须知:如何正确求助?哪些是违规求助? 2909142
关于积分的说明 8348077
捐赠科研通 2579432
什么是DOI,文献DOI怎么找? 1402820
科研通“疑难数据库(出版商)”最低求助积分说明 655523
邀请新用户注册赠送积分活动 634808