亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Dual-Embedding Networks for Malware Open-Set Recognition

恶意软件 计算机科学 嵌入 特征向量 判别式 人工智能 编码器 分类器(UML) 模式识别(心理学) 特征(语言学) 机器学习 数据挖掘 哲学 语言学 操作系统
作者
Jingcai Guo,Han Wang,Yuanyuan Xu,Wenchao Xu,Yufeng Zhan,Yuxia Sun,Song Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tnnls.2024.3373809
摘要

Malware open-set recognition (MOSR) is an emerging research domain that aims at jointly classifying malware samples from known families and detecting the ones from novel unknown families, respectively. Existing works mostly rely on a well-trained classifier considering the predicted probabilities of each known family with a threshold-based detection to achieve the MOSR. However, our observation reveals that the feature distributions of malware samples are extremely similar to each other even between known and unknown families. Thus, the obtained classifier may produce overly high probabilities of testing unknown samples toward known families and degrade the model performance. In this article, we propose the multi $\backslash$ modal dual-embedding networks, dubbed MDENet, to take advantage of comprehensive malware features from different modalities to enhance the diversity of malware feature space, which is more representative and discriminative for down-stream recognition. Concretely, we first generate a malware image for each observed sample based on their numeric features using our proposed numeric encoder with a re-designed multiscale CNN structure, which can better explore their statistical and spatial correlations. Besides, we propose to organize tokenized malware features into a sentence for each sample considering its behaviors and dynamics, and utilize language models as the textual encoder to transform it into a representable and computable textual vector. Such parallel multimodal encoders can fuse the above two components to enhance the feature diversity. Last, to further guarantee the open-set recognition (OSR), we dually embed the fused multimodal representation into one primary space and an associated sub-space, i.e., discriminative and exclusive spaces, with contrastive sampling and $\rho$ -bounded enclosing sphere regularizations, which resort to classification and detection, respectively. Moreover, we also enrich our previously proposed large-scaled malware dataset MAL-100 with multimodal characteristics and contribute an improved version dubbed MAL-100 $^{+}$ . Experimental results on the widely used malware dataset Mailing and the proposed MAL-100 $^{+}$ demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助qq采纳,获得10
3秒前
5秒前
8秒前
maclogos发布了新的文献求助10
10秒前
未晚完成签到,获得积分10
11秒前
橙子发布了新的文献求助10
15秒前
24秒前
26秒前
zzz完成签到 ,获得积分10
41秒前
小宋应助yueyue采纳,获得20
46秒前
Orange应助锯子采纳,获得10
50秒前
1分钟前
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
Dafuer完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
就拒绝内耗完成签到,获得积分20
1分钟前
Hello应助猫七采纳,获得10
1分钟前
Lucas应助雷桑采纳,获得10
1分钟前
潘善若发布了新的文献求助30
1分钟前
mostspecial完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
猫七发布了新的文献求助10
1分钟前
雷桑发布了新的文献求助10
1分钟前
潘善若完成签到,获得积分10
1分钟前
1分钟前
麦子要当写手完成签到,获得积分10
1分钟前
1分钟前
喵喵发文章啦完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
完美世界应助1461644768采纳,获得10
2分钟前
我爱学习完成签到 ,获得积分10
2分钟前
藤椒辣鱼应助mmyhn采纳,获得10
2分钟前
2分钟前
丘比特应助留胡子的代芙采纳,获得10
2分钟前
2分钟前
平常远山发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041785
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860