Insights and reviews on battery lifetime prediction from research to practice

电池(电) 心理学 物理 热力学 功率(物理)
作者
Xudong Qu,Dapai Shi,Jingyuan Zhao,Manh‐Kien Tran,Zhenghong Wang,Michael Fowler,Yubo Lian,Andrew Burke
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:94: 716-739 被引量:8
标识
DOI:10.1016/j.jechem.2024.03.013
摘要

The rising demand for energy storage solutions, especially in the electric vehicle and renewable energy sectors, highlights the importance of accurately predicting battery health to enhance their longevity and reliability. This article comprehensively examines various methods used to forecast battery health, including physics-based models, empirical models, and equivalent circuit models, among others. It delves into the promise of data-driven prognostics, utilizing both conventional machine learning and cutting-edge deep neural network techniques. The advantages and limitations of hybrid models are thoroughly analyzed, with a focus on the benefits of integrating diverse data sources to improve prognostic precision. Through practical case studies, the article showcases the effectiveness and flexibility of these approaches. It also critically addresses the challenges encountered in applying battery health prognostics in real-world scenarios, such as issues of scalability, complexity, and data anomalies. Despite these challenges, the article underscores the emerging opportunities brought about by recent technological, academic, and research advancements. These include the development of digital twin models for batteries, the use of data-centric AI and standardized benchmarking, the potential integration of blockchain technology for enhanced data security and transparency, and the synergy between edge and cloud computing to boost data analysis and processing. The primary goal of this article is to enrich the understanding of current battery health prognostic techniques and to inspire further research aimed at overcoming existing hurdles and tapping into new opportunities. It concludes with a visionary perspective on future research directions and potential developments in this evolving field, encouraging both researchers and practitioners to explore innovative solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早早完成签到,获得积分10
刚刚
破忒头完成签到,获得积分10
刚刚
钱财实景完成签到,获得积分10
1秒前
jerry完成签到 ,获得积分10
1秒前
1秒前
xiangqing完成签到 ,获得积分10
2秒前
破忒头发布了新的文献求助10
4秒前
李健的小迷弟应助笑笑采纳,获得10
5秒前
5秒前
5秒前
阳光明媚完成签到,获得积分10
5秒前
安详的书本完成签到 ,获得积分10
6秒前
7秒前
向日葵应助aku30采纳,获得10
7秒前
zero37完成签到,获得积分10
8秒前
雷雷发布了新的文献求助10
10秒前
orixero应助栖木采纳,获得10
10秒前
10秒前
10秒前
研友_5Y9Z75完成签到 ,获得积分0
11秒前
12秒前
12秒前
13秒前
震动的千萍完成签到,获得积分10
13秒前
XXXten完成签到 ,获得积分10
14秒前
14秒前
15秒前
Dr_He发布了新的文献求助20
19秒前
jia完成签到,获得积分20
20秒前
General完成签到 ,获得积分10
20秒前
天舞英姿发布了新的文献求助10
20秒前
无语大王完成签到,获得积分10
21秒前
文静的峻熙完成签到,获得积分10
21秒前
BisonHamster完成签到,获得积分10
21秒前
nczpf2010完成签到,获得积分10
22秒前
嘟嘟发布了新的文献求助10
23秒前
hua完成签到 ,获得积分10
24秒前
科研小子发布了新的文献求助10
24秒前
zty完成签到,获得积分10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023