衰老
转录组
鉴定(生物学)
细胞衰老
生物
细胞生物学
计算生物学
细胞
表型
基因表达
遗传学
基因
植物
作者
Wanyu Tao,Zhengqing Yu,Jing‐Dong J. Han
出处
期刊:Cell Metabolism
[Elsevier]
日期:2024-04-10
卷期号:36 (5): 1126-1143.e5
被引量:17
标识
DOI:10.1016/j.cmet.2024.03.009
摘要
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI