溶解有机碳
环境化学
硫黄
酸雨
化学
总有机碳
环境科学
炭黑
水质
有机化学
生态学
生物
天然橡胶
作者
Yanghui Xu,Xintu Wang,Qin Ou,Zhongbo Zhou,Jan Peter van der Hoek,Gang Liu
标识
DOI:10.1021/acs.est.4c00492
摘要
Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI