Simply Fine-Tuned Deep Learning-Based Classification for Breast Cancer with Mammograms

人工智能 乳腺癌 乳腺摄影术 人工神经网络 卷积神经网络 深度学习 梯度下降 计算机科学 模式识别(心理学) 判别式 随机梯度下降算法 医学 放射科 癌症 内科学
作者
Vicky Mudeng,Jinwoo Jeong,Se-woon Choe
出处
期刊:Computers, materials & continua 卷期号:73 (3): 4677-4693
标识
DOI:10.32604/cmc.2022.031046
摘要

A lump growing in the breast may be referred to as a breast mass related to the tumor. However, not all tumors are cancerous or malignant. Breast masses can cause discomfort and pain, depending on the size and texture of the breast. With an appropriate diagnosis, non-cancerous breast masses can be diagnosed earlier to prevent their cultivation from being malignant. With the development of the artificial neural network, the deep discriminative model, such as a convolutional neural network, may evaluate the breast lesion to distinguish benign and malignant cancers from mammogram breast masses images. This work accomplished breast masses classification relative to benign and malignant cancers using a digital database for screening mammography image datasets. A residual neural network 50 (ResNet50) model along with an adaptive gradient algorithm, adaptive moment estimation, and stochastic gradient descent optimizers, as well as data augmentations and fine-tuning methods, were implemented. In addition, a learning rate scheduler and -fold cross-validation were applied with training procedures to determine the best models. The results of training accuracy, -value, test accuracy, area under the curve, sensitivity, precision, F1-score, specificity, and kappa for adaptive gradient algorithm , , , and stochastic gradient descent fine-tunings indicate that the classifier is feasible for categorizing breast cancer into benign and malignant from the mammographic breast masses images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哭泣蛋挞完成签到 ,获得积分10
3秒前
性感的小蚂蚁完成签到,获得积分10
3秒前
斯文败类应助刘先生采纳,获得10
4秒前
starry发布了新的文献求助10
6秒前
心理学狗都不学完成签到,获得积分10
6秒前
7秒前
7秒前
朱朱发布了新的文献求助10
7秒前
自信的紫青关注了科研通微信公众号
8秒前
10秒前
黎明发布了新的文献求助10
11秒前
隐形冷雁发布了新的文献求助150
11秒前
紫熊发布了新的文献求助10
11秒前
11秒前
Serein发布了新的文献求助10
12秒前
Akim应助王肖采纳,获得10
12秒前
Jasper应助小郭采纳,获得10
12秒前
能干的邹发布了新的文献求助10
13秒前
starry完成签到,获得积分10
14秒前
14秒前
AD钙大王完成签到 ,获得积分10
15秒前
刘先生发布了新的文献求助10
15秒前
gaoxiaogao完成签到,获得积分10
16秒前
16秒前
aaronzhu1995完成签到 ,获得积分10
17秒前
17秒前
lanrui完成签到,获得积分20
18秒前
18秒前
王某某发布了新的文献求助10
18秒前
能干的邹完成签到,获得积分10
19秒前
超级学习大王完成签到,获得积分10
19秒前
希勤发布了新的文献求助10
20秒前
Serein完成签到,获得积分10
21秒前
朴素雁凡发布了新的文献求助10
21秒前
英姑应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
MQY应助科研通管家采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023