tar(计算)
催化作用
蒸汽重整
焦炭
碳化
化学工程
不错
合成气
材料科学
碳纤维
生物量(生态学)
原材料
制氢
化学
有机化学
冶金
复合材料
吸附
海洋学
计算机科学
工程类
程序设计语言
地质学
复合数
作者
Siqian Zhang,Xiaan Xiang,Zhangfeng Shen,Yinfeng Wang,Xi Li,Xuhui Zou,Haiyang Xu,Yongyong Cao,Haijun Chen,Yonggang Wang
标识
DOI:10.1016/j.ijhydene.2022.07.097
摘要
High-performance and inexpensive catalysts play a large role in effective removal of biomass tar produced during biomass gasification. In this study, raw wood, with long, through, but distorted channels and a low tortuosity, was selected as a support. A layered NiCe-metal organic framework (NiCe-MOF) was grown in-situ on the surface of raw wood microchannels by using abundant surface hydroxide groups. Then, this catalyst was carbonized at 600 °C in a N2 atmosphere to obtain NiCe-MOF derived catalyst/wood carbon (NiCe-MDC/WC), which was selected as a structured reactor for the steam reforming of biomass tar. NiCe-MDC/WC achieved an excellent conversion rate of approximately 99% for toluene and a high catalytic stability of 48 h at low temperature of 550 °C. Moreover, NiCe-MDC/WC showed higher catalytic performance than Ni-MDC/WC (∼79%), crushed-NiCe-MDC/WC (∼94%), and Ni/WC (∼75%) in stability tests. These excellent results were assumed to be derived from the multilevel structure obtained from wood carbon microchannels and secondary layered MOF channels, appropriate metal-support interactions, and the presence of Ce, which could improve the dispersion of active sites and mass transfer efficiency and inhibit coke formation. Thus, such Ni-based MOF-derived structured reactors are promising for tar conversion and useful syngas production.
科研通智能强力驱动
Strongly Powered by AbleSci AI