Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
动听的面包完成签到,获得积分10
2秒前
4秒前
心木完成签到 ,获得积分10
4秒前
分子筛催化完成签到,获得积分10
5秒前
hohune完成签到,获得积分20
5秒前
动听的面包发布了新的文献求助100
7秒前
酷波er应助不吃糖采纳,获得10
8秒前
8秒前
10秒前
凌代萱发布了新的文献求助10
13秒前
liu完成签到 ,获得积分10
14秒前
14秒前
愉快凌晴完成签到,获得积分10
14秒前
15秒前
Catalysis123发布了新的文献求助10
15秒前
机灵盼芙发布了新的文献求助10
16秒前
今后应助hohune采纳,获得10
16秒前
科研通AI2S应助xusansui321采纳,获得10
16秒前
胆XIAOXING完成签到 ,获得积分10
18秒前
qql完成签到,获得积分10
20秒前
凌代萱完成签到 ,获得积分10
22秒前
23秒前
大模型应助糊涂的青梦采纳,获得10
24秒前
Catalysis123完成签到,获得积分20
24秒前
tong完成签到,获得积分10
25秒前
26秒前
27秒前
充电宝应助qql采纳,获得10
30秒前
31秒前
31秒前
31秒前
浏阳河发布了新的文献求助10
32秒前
大民王完成签到,获得积分10
33秒前
Hayat发布了新的文献求助200
33秒前
33秒前
甘楽完成签到,获得积分10
34秒前
Roger完成签到,获得积分10
37秒前
Ox1dant发布了新的文献求助10
37秒前
清爽的黄豆完成签到,获得积分10
38秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187735
求助须知:如何正确求助?哪些是违规求助? 2837517
关于积分的说明 8015146
捐赠科研通 2500112
什么是DOI,文献DOI怎么找? 1334764
科研通“疑难数据库(出版商)”最低求助积分说明 637271
邀请新用户注册赠送积分活动 605251