Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳糖发布了新的文献求助10
刚刚
1秒前
123曾完成签到,获得积分10
2秒前
莫羽倾尘完成签到,获得积分10
2秒前
那个笨笨发布了新的文献求助10
3秒前
医学生发布了新的文献求助10
3秒前
开放芷天发布了新的文献求助10
4秒前
5秒前
隐形衬衫完成签到 ,获得积分10
5秒前
zxb发布了新的文献求助10
6秒前
7秒前
S-Lab Sonic发布了新的文献求助10
10秒前
马马马发布了新的文献求助10
10秒前
庞扬完成签到,获得积分20
10秒前
bubble发布了新的文献求助10
11秒前
misalia发布了新的文献求助10
11秒前
11秒前
12秒前
未见山完成签到,获得积分10
12秒前
传奇3应助zyc采纳,获得10
12秒前
12秒前
冷静巧凡完成签到,获得积分10
13秒前
13秒前
香蕉觅云应助那个笨笨采纳,获得10
13秒前
酷酷紫完成签到,获得积分20
15秒前
15秒前
芝士球球应助fujun0095采纳,获得20
15秒前
17秒前
17秒前
18秒前
大模型应助AMAZZZE采纳,获得10
19秒前
大个应助S-Lab Sonic采纳,获得10
19秒前
酷酷紫发布了新的文献求助10
20秒前
wsljc134发布了新的文献求助10
21秒前
21秒前
FashionBoy应助老迟到的越泽采纳,获得10
22秒前
绵马紫萁发布了新的文献求助30
23秒前
24秒前
wuwei91完成签到,获得积分10
24秒前
24秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3185517
求助须知:如何正确求助?哪些是违规求助? 2835837
关于积分的说明 8006683
捐赠科研通 2498311
什么是DOI,文献DOI怎么找? 1333375
科研通“疑难数据库(出版商)”最低求助积分说明 636828
邀请新用户注册赠送积分活动 604526