Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈哈完成签到,获得积分10
刚刚
weige发布了新的文献求助10
1秒前
可一完成签到,获得积分10
2秒前
3秒前
3秒前
eeeating完成签到,获得积分10
3秒前
4秒前
lhx完成签到,获得积分0
5秒前
小猫发布了新的文献求助10
5秒前
小吉完成签到,获得积分10
6秒前
迅速枕头发布了新的文献求助10
7秒前
欧阳璐完成签到,获得积分10
9秒前
10秒前
11秒前
bkagyin应助陈嘻嘻嘻嘻采纳,获得10
13秒前
14秒前
NexusExplorer应助Xingliang_Wu98采纳,获得10
14秒前
长命百岁发布了新的文献求助10
17秒前
eeeating发布了新的文献求助10
17秒前
19秒前
帅气的Bond发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助刻苦的元风采纳,获得10
22秒前
22秒前
一念春风发布了新的文献求助10
23秒前
xuxingjie发布了新的文献求助10
24秒前
Chloe发布了新的文献求助10
25秒前
西西发布了新的文献求助10
26秒前
32kekediffers发布了新的文献求助10
27秒前
思源应助第三方斯蒂芬采纳,获得10
27秒前
29秒前
29秒前
汉堡包应助小猫采纳,获得10
31秒前
32秒前
32秒前
Shadow完成签到 ,获得积分10
32秒前
nini完成签到,获得积分10
32秒前
RR发布了新的文献求助10
33秒前
Xu_W卜完成签到,获得积分10
35秒前
35秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191675
求助须知:如何正确求助?哪些是违规求助? 2841005
关于积分的说明 8030939
捐赠科研通 2504476
什么是DOI,文献DOI怎么找? 1337672
科研通“疑难数据库(出版商)”最低求助积分说明 638193
邀请新用户注册赠送积分活动 606684