Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
5秒前
搞怪哑铃发布了新的文献求助10
5秒前
8秒前
8秒前
Sunny完成签到 ,获得积分10
8秒前
酷炫的之柔完成签到,获得积分10
8秒前
无花果应助淡定沧海采纳,获得10
8秒前
Auraro发布了新的文献求助10
8秒前
欧阳寒子发布了新的文献求助10
9秒前
周凡淇发布了新的文献求助10
9秒前
10秒前
11秒前
Moonlight完成签到 ,获得积分10
11秒前
香蕉觅云应助高高诗柳采纳,获得10
14秒前
15秒前
adazbq完成签到 ,获得积分10
15秒前
17秒前
阳佟听荷完成签到,获得积分10
17秒前
17秒前
18秒前
隐形完成签到,获得积分10
18秒前
霸气的思柔完成签到,获得积分10
19秒前
林爷完成签到,获得积分10
20秒前
单薄惜文发布了新的文献求助10
21秒前
21秒前
司徒无剑发布了新的文献求助10
21秒前
小章完成签到,获得积分10
21秒前
李健应助奋斗荣轩采纳,获得10
21秒前
木一完成签到 ,获得积分10
23秒前
星辰大海应助Ventus采纳,获得10
23秒前
kilig完成签到 ,获得积分10
24秒前
L~完成签到,获得积分10
24秒前
搞怪哑铃完成签到,获得积分10
24秒前
制冷剂完成签到 ,获得积分10
25秒前
太叔笑蓝发布了新的文献求助10
26秒前
26秒前
27秒前
我我我完成签到,获得积分10
27秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190283
求助须知:如何正确求助?哪些是违规求助? 2839564
关于积分的说明 8024584
捐赠科研通 2502505
什么是DOI,文献DOI怎么找? 1336607
科研通“疑难数据库(出版商)”最低求助积分说明 637841
邀请新用户注册赠送积分活动 606051