亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
29秒前
jyy应助科研通管家采纳,获得10
38秒前
Akim应助科研通管家采纳,获得10
38秒前
51秒前
56秒前
圆圆的分子球完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
vv完成签到 ,获得积分10
1分钟前
优秀冰真完成签到,获得积分10
1分钟前
2分钟前
2分钟前
77发布了新的文献求助10
2分钟前
2分钟前
FEI发布了新的文献求助10
2分钟前
一剑白完成签到 ,获得积分10
2分钟前
FEI完成签到,获得积分20
3分钟前
jia应助FEI采纳,获得10
3分钟前
3分钟前
Kevin发布了新的文献求助10
3分钟前
77完成签到,获得积分10
3分钟前
NexusExplorer应助FEI采纳,获得10
3分钟前
xinxinxin91完成签到,获得积分10
3分钟前
柚子完成签到 ,获得积分10
3分钟前
3分钟前
牛蛙丶丶完成签到,获得积分10
3分钟前
3分钟前
Ren大奔完成签到 ,获得积分10
4分钟前
4分钟前
HY完成签到,获得积分10
4分钟前
李健的小迷弟应助morena采纳,获得10
5分钟前
丘比特应助zhang采纳,获得10
5分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
6分钟前
香芹又青发布了新的文献求助30
6分钟前
隐形曼青应助morena采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200737
求助须知:如何正确求助?哪些是违规求助? 2850496
关于积分的说明 8072154
捐赠科研通 2514239
什么是DOI,文献DOI怎么找? 1346973
科研通“疑难数据库(出版商)”最低求助积分说明 640303
邀请新用户注册赠送积分活动 610411