Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助微风轻起采纳,获得10
刚刚
刚刚
汉堡包应助zoloft采纳,获得10
刚刚
沙河口大长硬完成签到,获得积分10
1秒前
爱笑的冷风完成签到 ,获得积分10
1秒前
宇文数学发布了新的文献求助10
2秒前
阿吧完成签到,获得积分10
2秒前
苏苏发布了新的文献求助10
2秒前
阿笨猫完成签到,获得积分10
4秒前
4秒前
5秒前
会飞的鱼完成签到 ,获得积分10
5秒前
Beyond完成签到,获得积分10
6秒前
8秒前
曾经的路人完成签到,获得积分20
8秒前
9秒前
Jasper应助小猫多鱼采纳,获得10
9秒前
上善若水完成签到 ,获得积分10
10秒前
Yan0909发布了新的文献求助10
11秒前
ii发布了新的文献求助10
11秒前
科研通AI5应助诸笑白采纳,获得10
13秒前
Lynnyue发布了新的文献求助10
14秒前
浅度求索应助Anquan采纳,获得30
14秒前
123456xq完成签到 ,获得积分10
15秒前
科研通AI5应助魏伯安采纳,获得10
15秒前
zoloft发布了新的文献求助10
16秒前
16秒前
畸你太美完成签到 ,获得积分10
16秒前
汉堡包应助圣晟胜采纳,获得10
17秒前
灯火完成签到,获得积分10
17秒前
xinxin完成签到,获得积分10
18秒前
xiaoxiao发布了新的文献求助10
19秒前
啵乐乐发布了新的文献求助10
19秒前
liyanglin发布了新的文献求助10
19秒前
21秒前
ii完成签到,获得积分10
21秒前
21秒前
hunbaekkkkk完成签到 ,获得积分10
22秒前
xiangxiang发布了新的文献求助10
23秒前
CodeCraft应助youjiang采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849