亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
樱桃猴子应助Rita采纳,获得10
11秒前
我是老大应助研友_Z3NGvn采纳,获得10
14秒前
花玥鹿完成签到,获得积分10
15秒前
16秒前
HELAOBAN发布了新的文献求助10
21秒前
25秒前
Jay发布了新的文献求助10
26秒前
29秒前
鹅鹅鹅完成签到,获得积分10
29秒前
blue2021发布了新的文献求助10
30秒前
希望天下0贩的0应助HELAOBAN采纳,获得10
30秒前
深情安青应助Sherry采纳,获得10
30秒前
研友_Z3NGvn发布了新的文献求助10
32秒前
搜集达人应助科研小驴采纳,获得10
34秒前
Eiland发布了新的文献求助10
35秒前
Ji完成签到,获得积分10
35秒前
小二郎应助和谐乌冬面采纳,获得10
35秒前
oddope发布了新的文献求助10
41秒前
Eiland完成签到,获得积分20
44秒前
happyrrc完成签到,获得积分10
46秒前
48秒前
51秒前
本草石之寒温完成签到 ,获得积分10
53秒前
整齐的翩跹完成签到 ,获得积分20
54秒前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
小蘑菇应助alexhua采纳,获得10
1分钟前
1分钟前
竹筏过海应助科研通管家采纳,获得10
1分钟前
竹筏过海应助科研通管家采纳,获得10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
LY_Qin完成签到,获得积分10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
所所应助整齐的翩跹采纳,获得10
1分钟前
御坂延珠完成签到,获得积分10
1分钟前
一颗橙子发布了新的文献求助30
1分钟前
JacekYu完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
Idoxuridine 260
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3196601
求助须知:如何正确求助?哪些是违规求助? 2845351
关于积分的说明 8053943
捐赠科研通 2509944
什么是DOI,文献DOI怎么找? 1342121
科研通“疑难数据库(出版商)”最低求助积分说明 639320
邀请新用户注册赠送积分活动 608622