Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
细腻的雅山完成签到 ,获得积分10
刚刚
EVEN完成签到 ,获得积分10
1秒前
1秒前
chen发布了新的文献求助10
1秒前
彭于晏应助李小新采纳,获得10
1秒前
2秒前
咪咪不吃糖完成签到,获得积分10
3秒前
zhuo W发布了新的文献求助20
3秒前
平常冬天完成签到,获得积分10
4秒前
shihui发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
Pdacac完成签到,获得积分10
6秒前
Minerva发布了新的文献求助10
6秒前
7秒前
开放善斓发布了新的文献求助10
7秒前
7秒前
邢夏之完成签到,获得积分10
7秒前
鱼大仙发布了新的文献求助10
8秒前
大模型应助咪咪不吃糖采纳,获得10
8秒前
乐乐应助爱你不商量采纳,获得10
8秒前
呆萌的u完成签到,获得积分10
8秒前
9秒前
从容芮应助lvsehx采纳,获得10
9秒前
徐洲发布了新的文献求助10
9秒前
李健的小迷弟应助chen采纳,获得10
9秒前
小九完成签到,获得积分10
10秒前
lixinyue发布了新的文献求助10
10秒前
复杂觅海发布了新的文献求助10
11秒前
夕荀发布了新的文献求助10
11秒前
共享精神应助谭显芝采纳,获得10
11秒前
14秒前
直率的从彤完成签到,获得积分10
14秒前
小二郎应助羊了个羊采纳,获得10
14秒前
田様应助蜗牛采纳,获得10
16秒前
Hana完成签到,获得积分20
18秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191096
求助须知:如何正确求助?哪些是违规求助? 2840441
关于积分的说明 8028444
捐赠科研通 2503796
什么是DOI,文献DOI怎么找? 1337185
科研通“疑难数据库(出版商)”最低求助积分说明 638034
邀请新用户注册赠送积分活动 606486