已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Learning for RGB-Guided Depth Enhancement by Exploiting the Dependency Between RGB and Depth

RGB颜色模型 人工智能 计算机科学 依赖关系(UML) 计算机视觉 降噪 噪音(视频) 模式识别(心理学) 图像(数学)
作者
Jun Wang,Peilin Liu,Fei Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 159-174 被引量:5
标识
DOI:10.1109/tip.2022.3226419
摘要

Due to the imaging mechanism of time-of-flight (ToF) sensors, the captured depth images usually suffer from severe noise and degradation. Though many RGB-guided methods have been proposed for depth image enhancement in the past few years, yet the enhancement performance on real-world depth images is still largely unsatisfactory. Two main reasons are the complexity of realistic noise and degradation in depth images, and the difficulty in collecting noise-clean pairs for supervised enhancement learning. This work aims to develop a self-supervised learning method for RGB-guided depth image enhancement, which does not require any noisy-clean pairs but can significantly boost the enhancement performance on real-world noisy depth images. To this end, we exploit the dependency between RGB and depth images to self-supervise the learning of the enhancement model. It is achieved by maximizing the cross-modal dependency between RGB and depth to promote the enhanced depth having dependency with the RGB of the same scene as much as possible. Furthermore, we augment the cross-modal dependency maximization formulation based on the optimal transport theory to achieve further performance improvement. Experimental results on both synthetic and real-world data demonstrate that our method can significantly outperform existing state-of-the-art methods on depth denoising, multi-path interference suppression, and hole filling. Particularly, our method shows remarkable superiority over existing ones on real-world data in handling various realistic complex degradation. Code is available at https://github.com/wjcyt/SRDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lcy发布了新的文献求助10
1秒前
yy完成签到,获得积分10
2秒前
May发布了新的文献求助10
2秒前
淡定从霜发布了新的文献求助10
6秒前
WSYang完成签到,获得积分10
9秒前
无花果应助山大橙采纳,获得10
11秒前
慕青应助赵zhao采纳,获得10
12秒前
夏天再见发布了新的文献求助10
13秒前
疯狂的珊完成签到,获得积分20
15秒前
15秒前
chiyu完成签到,获得积分10
18秒前
山大橙完成签到,获得积分10
19秒前
金刚经应助夏天再见采纳,获得10
19秒前
20秒前
20秒前
吴喜龙发布了新的文献求助10
20秒前
高大手链完成签到 ,获得积分10
25秒前
学霸宇大王完成签到 ,获得积分10
26秒前
27秒前
affff发布了新的文献求助10
28秒前
28秒前
28秒前
iiomee完成签到 ,获得积分10
33秒前
34秒前
小白发布了新的文献求助10
34秒前
吴喜龙完成签到,获得积分10
34秒前
36秒前
1234567890发布了新的文献求助10
39秒前
今后应助眼睛大白昼采纳,获得10
42秒前
42秒前
44秒前
77完成签到 ,获得积分20
44秒前
英俊的铭应助小白采纳,获得10
44秒前
Woo完成签到,获得积分10
45秒前
46秒前
48秒前
小二郎应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
华仔应助科研通管家采纳,获得10
48秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3189653
求助须知:如何正确求助?哪些是违规求助? 2839039
关于积分的说明 8022491
捐赠科研通 2501879
什么是DOI,文献DOI怎么找? 1336060
科研通“疑难数据库(出版商)”最低求助积分说明 637750
邀请新用户注册赠送积分活动 605835