亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iSnap: Evolution and Evaluation of a Data-Driven Hint System for Block-Based Programming

计算机科学 块(置换群论) 班级(哲学) 多媒体 人机交互 人工智能 数学 几何学
作者
Samiha Marwan,Thomas Price
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 399-413 被引量:6
标识
DOI:10.1109/tlt.2022.3223577
摘要

Novice programmers often struggle on assignments, and timely help, such as a hint on what to do next, can help students continue to progress and learn, rather than giving up. However, in large programming classrooms, it is hard for instructors to provide such real-time support for every student. Researchers have, therefore, put tremendous effort into developing algorithms to generate automated data-driven hints to help students at scale. Despite this, few controlled studies have directly evaluated the impact of such hints on students' performance and learning. It is also unclear what specific design features make hints more or less effective. In this article, we present iSnap, a block-based programming environment that provides novices with data-driven next-step hints in real time. This article describes our improvements to iSnap over four years, including its "enhanced" next-step hints with three design features: textual explanations, self-explanation prompts, and an adaptive hint display. Moreover, we conducted a controlled study in an authentic classroom setting over several weeks to evaluate the impact of iSnap's enhanced hints on students' performance and learning. We found students who received the enhanced hints perform better on in-class assignments and have higher programming efficiency in homework assignments than those who did not receive hints, but that hints did not significantly impact students' learning. We also discuss the challenges of classroom studies and the implications of enhanced hints compared to prior evaluations in laboratory settings, which is essential to validate the efficacy of next-step hints' impact in a real classroom experience.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助过时的起眸采纳,获得10
5秒前
并肩完成签到 ,获得积分10
12秒前
13秒前
科研小白完成签到,获得积分10
15秒前
18秒前
彭于晏应助shenhai采纳,获得10
37秒前
Bingtao_Lian完成签到 ,获得积分10
48秒前
49秒前
星落枝头发布了新的文献求助10
55秒前
1分钟前
1分钟前
iwaking完成签到,获得积分10
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
兔子不秃头y完成签到 ,获得积分10
1分钟前
EmmaEmma完成签到,获得积分20
1分钟前
菜菜蔡儿完成签到 ,获得积分10
1分钟前
无问完成签到,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
2分钟前
王哈哈发布了新的文献求助10
2分钟前
2分钟前
shenhai发布了新的文献求助10
2分钟前
搜集达人应助王哈哈采纳,获得10
2分钟前
2分钟前
2分钟前
winkyyang完成签到 ,获得积分10
2分钟前
Luke Gee完成签到 ,获得积分10
2分钟前
斯文败类应助shenhai采纳,获得10
2分钟前
小可完成签到 ,获得积分10
2分钟前
暮桉完成签到,获得积分20
2分钟前
2分钟前
ahui发布了新的文献求助10
2分钟前
Ava应助暮桉采纳,获得10
2分钟前
2分钟前
科研小刘完成签到,获得积分10
2分钟前
3分钟前
爱科研的小周完成签到 ,获得积分10
3分钟前
3分钟前
明理的茹妖完成签到 ,获得积分10
3分钟前
he完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989