过电位
材料科学
兴奋剂
阴极
电解
分解水
密度泛函理论
吉布斯自由能
化学工程
纳米片
分析化学(期刊)
纳米技术
电化学
物理化学
热力学
电极
光电子学
催化作用
物理
计算化学
电解质
工程类
光催化
色谱法
化学
生物化学
作者
Fan Zhang,Xin Wang,Weiwei Han,Yang Qian,Lingshu Qiu,Yi He,Lecheng Lei,Xingwang Zhang
标识
DOI:10.1002/adfm.202212381
摘要
Abstract The high intermediate (H*, OH*) energy barriers and slow mass/charge transfer increase the overpotential of alkaline water electrolysis at large‐current‐density. Engineering the electronic structure with the morphology of the catalyst to reduce energy barriers and improve mass/charge transportation is effective but remains challenging. Herein, a Ce‐doped CoP nanosheet is hybrid with Ni 3 P@NF (Ni foam) support to enhance mass/charge transfer, tune energy barriers, and improve water‐splitting kinetics through a synergistic activation. The engineered Ce 0.2 ‐CoP/Ni 3 P@NF cathode exhibits an ultralow overpotential (η 500 , η 1000 ) of −185, and −225 mV at −500 and −1000 mA cm −2 in 1.0 m KOH, along with an excellent pH‐universality. Impressively, an electrolyzer using the Ce 0.2 ‐CoP/Ni 3 P@NF cathode can afford 500 mA cm −2 at a cell voltage of only 1.775 V and maintain stable electrolysis for 200 h in 25 wt% KOH (50 °C). Characterization and density functional theory calculation further reveal the Ce‐doping and CoP/Ni 3 P hybrid interaction synergistically downshift d‐band centers (ε d = −2.0 eV) of Ce 0.2 ‐CoP/Ni 3 P to the Fermi level, thereby activate local electronic structure for accelerating H 2 O dissociation and optimizing Gibbs free energy of hydrogen adsorption (∆ G H* ).
科研通智能强力驱动
Strongly Powered by AbleSci AI