Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures

成对比较 可解释性 计算机科学 人工智能 人工神经网络 归纳偏置 一般化 亲缘关系 图形 生物系统 化学 数学 理论计算机科学 生物 立体化学 多任务学习 任务(项目管理) 数学分析 管理 经济
作者
Ziduo Yang,Weihe Zhong,Qiujie Lv,Tiejun Dong,Guanxing Chen,Calvin Yu‐Chian Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 8191-8208 被引量:8
标识
DOI:10.1109/tpami.2024.3400515
摘要

Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels of generalization capability and interpretability. Intuitively, the inductive bias of an ML-based model for PLA prediction should fit in with biological mechanisms relevant for binding to achieve good predictions with meaningful reasons. To this end, we propose an interaction-based inductive bias to restrict neural networks to functions relevant for binding with two assumptions: (1) A protein-ligand complex can be naturally expressed as a heterogeneous graph with covalent and non-covalent interactions; (2) The predicted PLA is the sum of pairwise atom-atom affinities determined by non-covalent interactions. The interaction-based inductive bias is embodied by an explainable heterogeneous interaction graph neural network (EHIGN) for explicitly modeling pairwise atom-atom interactions to predict PLA from 3D structures. Extensive experiments demonstrate that EHIGN achieves better generalization capability than other state-of-the-art ML-based baselines in PLA prediction and structure-based virtual screening. More importantly, comprehensive analyses of distance-affinity, pose-affinity, and substructure-affinity relations suggest that the interaction-based inductive bias can guide the model to learn atomic interactions that are consistent with physical reality. As a case study to demonstrate practical usefulness, our method is tested for predicting the efficacy of Nirmatrelvir against SARS-CoV-2 variants. EHIGN successfully recognizes the changes in the efficacy of Nirmatrelvir for different SARS-CoV-2 variants with meaningful reasons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ggg发布了新的文献求助10
刚刚
1秒前
西西西完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
niuniu完成签到,获得积分20
2秒前
Kenzonvay完成签到,获得积分10
2秒前
顺利毕业完成签到 ,获得积分10
2秒前
3秒前
酷波er应助Minton采纳,获得10
3秒前
爆米花应助追风采纳,获得10
4秒前
Edison发布了新的文献求助10
4秒前
odell发布了新的文献求助10
4秒前
5秒前
5秒前
laochen发布了新的文献求助10
5秒前
heylay发布了新的文献求助10
5秒前
MX001发布了新的文献求助10
5秒前
ggg完成签到,获得积分10
6秒前
慕子默完成签到,获得积分10
6秒前
yyytr发布了新的文献求助10
6秒前
阿木木完成签到,获得积分10
7秒前
时米米米发布了新的文献求助10
7秒前
7秒前
zyf完成签到,获得积分10
7秒前
忧伤的二锅头完成签到 ,获得积分10
8秒前
JPH1990发布了新的文献求助30
8秒前
Baraka完成签到,获得积分10
8秒前
油菜籽发布了新的文献求助10
9秒前
海棠花未眠完成签到,获得积分10
9秒前
10秒前
onesail完成签到 ,获得积分10
11秒前
11秒前
漂泊1991发布了新的文献求助10
11秒前
11秒前
MX001完成签到,获得积分10
11秒前
Julo发布了新的文献求助10
12秒前
Emma完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680