Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures

成对比较 可解释性 计算机科学 人工智能 人工神经网络 归纳偏置 一般化 亲缘关系 图形 生物系统 化学 数学 理论计算机科学 生物 立体化学 多任务学习 任务(项目管理) 数学分析 管理 经济
作者
Ziduo Yang,Weihe Zhong,Qiujie Lv,Tiejun Dong,Guanxing Chen,Calvin Yu‐Chian Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 8191-8208 被引量:5
标识
DOI:10.1109/tpami.2024.3400515
摘要

Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels of generalization capability and interpretability. Intuitively, the inductive bias of an ML-based model for PLA prediction should fit in with biological mechanisms relevant for binding to achieve good predictions with meaningful reasons. To this end, we propose an interaction-based inductive bias to restrict neural networks to functions relevant for binding with two assumptions: (1) A protein-ligand complex can be naturally expressed as a heterogeneous graph with covalent and non-covalent interactions; (2) The predicted PLA is the sum of pairwise atom-atom affinities determined by non-covalent interactions. The interaction-based inductive bias is embodied by an explainable heterogeneous interaction graph neural network (EHIGN) for explicitly modeling pairwise atom-atom interactions to predict PLA from 3D structures. Extensive experiments demonstrate that EHIGN achieves better generalization capability than other state-of-the-art ML-based baselines in PLA prediction and structure-based virtual screening. More importantly, comprehensive analyses of distance-affinity, pose-affinity, and substructure-affinity relations suggest that the interaction-based inductive bias can guide the model to learn atomic interactions that are consistent with physical reality. As a case study to demonstrate practical usefulness, our method is tested for predicting the efficacy of Nirmatrelvir against SARS-CoV-2 variants. EHIGN successfully recognizes the changes in the efficacy of Nirmatrelvir for different SARS-CoV-2 variants with meaningful reasons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
1秒前
吹泡泡的红豆完成签到 ,获得积分10
2秒前
研友_89eBO8完成签到 ,获得积分10
2秒前
隐形曼青应助ZeJ采纳,获得10
2秒前
2秒前
隐形曼青应助温暖的钻石采纳,获得10
3秒前
Khr1stINK发布了新的文献求助10
4秒前
123cxj发布了新的文献求助10
5秒前
星辰大海应助红红采纳,获得10
5秒前
sweetbearm应助小周采纳,获得10
6秒前
科研通AI5应助赖道之采纳,获得10
6秒前
7秒前
HonamC完成签到,获得积分10
8秒前
十三十四十五完成签到,获得积分10
9秒前
潇洒的问夏完成签到 ,获得积分10
11秒前
无声瀑布完成签到,获得积分10
11秒前
Bingtao_Lian完成签到 ,获得积分10
12秒前
小布丁完成签到 ,获得积分10
12秒前
竹筏过海应助季生采纳,获得30
13秒前
14秒前
buno应助22采纳,获得10
15秒前
赘婿应助TT采纳,获得10
16秒前
16秒前
16秒前
17秒前
Jenny应助赖道之采纳,获得10
19秒前
依古比古完成签到 ,获得积分10
21秒前
汎影发布了新的文献求助10
21秒前
小二完成签到,获得积分10
21秒前
22秒前
24秒前
顾矜应助长情洙采纳,获得10
24秒前
monere发布了新的文献求助30
24秒前
Xiaoxiao应助汉关采纳,获得10
26秒前
26秒前
汎影完成签到,获得积分10
27秒前
28秒前
Chen发布了新的文献求助10
30秒前
WW完成签到,获得积分10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808