Non-Contact Blood Pressure Estimation from Radar Signals by a Stacked Deformable Convolution Network

计算机科学 人工智能 雷达 卷积(计算机科学) 估计 计算机视觉 遥感 地质学 人工神经网络 电信 工程类 系统工程
作者
Ye Qiu,Xinjie Ma,Xinglong Li,Shaocan Fan,Zhenmiao Deng,Xiaohong Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4553-4564 被引量:3
标识
DOI:10.1109/jbhi.2024.3400961
摘要

This study introduces a contactless blood pressure monitoring approach that combines conventional radar signal processing with novel deep learning architectures. During the preprocessing phase, datasets suitable for synchronization are created by integrating Kalman filtering, multiscale bandpass filters, and a periodic extraction method in the time domain. These data comprise data on chest micro variations, encapsulating a complex array of physiological and biomedical information reflective of cardiac micromotions. The Radar-based Stacked Deformable convolution Network (RSD-Net) integrates channel and spatial self attention mechanisms within a deformable convolutional framework to enhance feature extraction from radar signals. The network architecture systematically employs deformable convolutions for initial deep feature extraction from individual signals. Subsequently, continuous blood pressure estimation is conducted using self attention mechanisms on feature map from single source coupled with multi-feature map channel attention. The performance of model is corroborated via the open-source dataset procured using a non-invasive 24 GHz six-port continuous wave radar system. The dataset, encompassing readings from 30 healthy individuals subjected to diverse conditions including rest, the Valsalva maneuver, apnea, and tilt-table examinations. It serves to substantiate the validity and resilience of the proposed method in the non-contact assessment of continuous blood pressure. Evaluation metrics reveal Pearson correlation coefficients of 0.838 for systolic and 0.797 for diastolic blood pressure predictions. The Mean Error (ME) and Standard Deviation (SD) for systolic and diastolic blood pressure measurements are -0.32 ±6.14 mmHg and -0.20 ±5.50 mmHg, respectively. The ablation study assesses the contribution of different structural components of the RSD-Net, validating their significance in the overall of model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weddcf完成签到,获得积分10
刚刚
1秒前
独特的翠芙完成签到,获得积分10
1秒前
1秒前
1秒前
xjcy应助非而者厚采纳,获得10
1秒前
1秒前
2秒前
阿航发布了新的文献求助10
2秒前
2秒前
3秒前
ta发布了新的文献求助10
3秒前
3秒前
小蘑菇应助易烊千玺老婆采纳,获得30
3秒前
Orion发布了新的文献求助10
3秒前
yufanhui应助wudidafei采纳,获得10
3秒前
agleam完成签到,获得积分10
4秒前
明理的芷完成签到,获得积分10
4秒前
Nancy发布了新的文献求助10
4秒前
4秒前
zzq发布了新的文献求助10
5秒前
cong完成签到,获得积分10
5秒前
阿皓要发nature完成签到,获得积分10
5秒前
youjun发布了新的文献求助10
6秒前
6秒前
小曲发布了新的文献求助10
6秒前
belssingoo发布了新的文献求助10
6秒前
daidai发布了新的文献求助10
7秒前
赘婿应助甜甜采纳,获得10
7秒前
行者无疆发布了新的文献求助10
7秒前
假发君完成签到,获得积分10
7秒前
HIKUN发布了新的文献求助10
8秒前
9秒前
10秒前
科研通AI5应助科研Five采纳,获得10
10秒前
10秒前
小二郎应助qq采纳,获得10
10秒前
阿昔完成签到,获得积分10
11秒前
Wrong完成签到,获得积分10
11秒前
缥缈小夏完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170