HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学分析 数学
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
3秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Dr.Tang完成签到 ,获得积分10
7秒前
闻屿完成签到,获得积分10
8秒前
lcarus完成签到 ,获得积分10
11秒前
风里等你完成签到,获得积分10
13秒前
赧赧完成签到 ,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
lcarus关注了科研通微信公众号
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Adc应助科研通管家采纳,获得10
15秒前
stiger应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
看文献完成签到,获得积分10
16秒前
16秒前
呆萌芙蓉完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
淮安石河子完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
娷静完成签到 ,获得积分10
24秒前
TGU的小马同学完成签到 ,获得积分10
24秒前
24秒前
老和山完成签到,获得积分10
26秒前
kusicfack完成签到,获得积分10
27秒前
28秒前
银河里完成签到 ,获得积分10
29秒前
空间完成签到 ,获得积分10
29秒前
安安完成签到,获得积分10
30秒前
NexusExplorer应助一个小胖子采纳,获得10
31秒前
笑点低的铁身完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527