HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学分析 数学
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
4秒前
量子星尘发布了新的文献求助10
5秒前
shi0331完成签到,获得积分10
7秒前
飞云完成签到 ,获得积分10
8秒前
执着的以筠完成签到 ,获得积分10
13秒前
shihun完成签到 ,获得积分20
14秒前
Wangyf完成签到 ,获得积分10
21秒前
cadcae完成签到,获得积分10
23秒前
合适醉蝶完成签到 ,获得积分10
24秒前
longer完成签到 ,获得积分10
29秒前
数乱了梨花完成签到 ,获得积分0
30秒前
herpes完成签到 ,获得积分0
31秒前
量子星尘发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
Feng完成签到 ,获得积分10
33秒前
hadfunsix完成签到 ,获得积分10
39秒前
俊逸的香萱完成签到 ,获得积分10
42秒前
23333完成签到 ,获得积分10
46秒前
50秒前
量子星尘发布了新的文献求助10
51秒前
量子星尘发布了新的文献求助10
55秒前
23完成签到 ,获得积分10
57秒前
丰富的归尘完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
myq完成签到 ,获得积分10
1分钟前
崔京成完成签到 ,获得积分10
1分钟前
Amelia完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
TRACEY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tingalan完成签到,获得积分0
1分钟前
Yenom完成签到 ,获得积分10
1分钟前
Twonej应助Dengera采纳,获得30
1分钟前
抹不掉的记忆完成签到,获得积分10
1分钟前
吴丹发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
泥嚎完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664669
求助须知:如何正确求助?哪些是违规求助? 4867964
关于积分的说明 15108331
捐赠科研通 4823340
什么是DOI,文献DOI怎么找? 2582243
邀请新用户注册赠送积分活动 1536300
关于科研通互助平台的介绍 1494695