亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学分析 数学
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千寻完成签到,获得积分10
1秒前
4秒前
等待的花生完成签到,获得积分10
11秒前
姚奋斗完成签到,获得积分10
14秒前
23秒前
naomi完成签到 ,获得积分10
26秒前
norberta发布了新的文献求助10
29秒前
火星仙人掌完成签到 ,获得积分10
29秒前
31秒前
LJL完成签到 ,获得积分10
33秒前
xiaofeiyan完成签到 ,获得积分10
39秒前
ohmy菌素完成签到,获得积分10
40秒前
Akim应助Mark_He采纳,获得10
53秒前
54秒前
55秒前
善良夜梅发布了新的文献求助10
58秒前
酷波er应助adam采纳,获得10
1分钟前
1分钟前
科研通AI2S应助善良夜梅采纳,获得10
1分钟前
hush发布了新的文献求助10
1分钟前
1分钟前
1分钟前
777发布了新的文献求助10
1分钟前
李健的粉丝团团长应助hush采纳,获得10
1分钟前
1分钟前
777完成签到,获得积分10
1分钟前
adam发布了新的文献求助10
1分钟前
xj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ZC完成签到,获得积分10
1分钟前
Vincy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
悦耳代亦完成签到 ,获得积分10
1分钟前
Parotodus完成签到 ,获得积分10
1分钟前
norberta完成签到,获得积分10
1分钟前
缓慢的翅膀完成签到,获得积分10
1分钟前
ronnie147完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248675
求助须知:如何正确求助?哪些是违规求助? 2892114
关于积分的说明 8269934
捐赠科研通 2560255
什么是DOI,文献DOI怎么找? 1388945
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627810