HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学分析 数学
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
含蓄绿兰发布了新的文献求助10
刚刚
刚刚
刚刚
充电宝应助流水采纳,获得30
1秒前
1秒前
平常盼易完成签到,获得积分20
1秒前
2秒前
2秒前
xxx11完成签到,获得积分10
2秒前
3秒前
我嘞个豆发布了新的文献求助10
3秒前
kyf1993发布了新的文献求助10
3秒前
木棉完成签到,获得积分10
4秒前
烽火残心发布了新的文献求助10
4秒前
shaw发布了新的文献求助10
4秒前
粗犷的雨梅关注了科研通微信公众号
4秒前
良辰发布了新的文献求助10
4秒前
小西发布了新的文献求助10
5秒前
领导范儿应助7777采纳,获得10
5秒前
学学学天天学完成签到,获得积分10
6秒前
ltc发布了新的文献求助10
6秒前
yaoyao发布了新的文献求助10
6秒前
Mia发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
顾矜应助颀一一采纳,获得10
7秒前
廿伊发布了新的文献求助10
8秒前
慕青应助阳光青旋采纳,获得30
8秒前
Hello应助佳期采纳,获得10
8秒前
木沐发布了新的文献求助10
8秒前
9秒前
眉间雪完成签到,获得积分10
9秒前
小蘑菇应助Pk采纳,获得10
9秒前
10秒前
万能图书馆应助手术刀采纳,获得10
10秒前
NNi关闭了NNi文献求助
10秒前
jeff完成签到,获得积分10
10秒前
Legend发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189