HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学 数学分析
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjiali发布了新的文献求助10
刚刚
Mhl发布了新的文献求助10
刚刚
慈祥的不言完成签到,获得积分10
刚刚
顾矜应助静加油采纳,获得10
刚刚
小杜完成签到,获得积分10
刚刚
刚刚
七七发布了新的文献求助10
1秒前
1秒前
小心科研发布了新的文献求助10
1秒前
思源应助Aime采纳,获得10
1秒前
guojinyu完成签到,获得积分10
1秒前
聪慧小霜应助一裤子灰采纳,获得10
2秒前
吃饭发布了新的文献求助10
2秒前
华仔应助axn采纳,获得30
2秒前
Brucewang1127发布了新的文献求助10
3秒前
3秒前
我是灭宝完成签到,获得积分10
3秒前
4秒前
大模型应助彗星采纳,获得10
4秒前
4秒前
科目三应助Feng采纳,获得30
4秒前
5秒前
AA完成签到,获得积分10
5秒前
5秒前
CodeCraft应助墨懿采纳,获得10
5秒前
华仔应助天真的雅绿采纳,获得20
6秒前
6秒前
666666完成签到,获得积分10
6秒前
bluebell完成签到,获得积分10
6秒前
酷波er应助温柔的蛋挞采纳,获得10
6秒前
1230发布了新的文献求助10
6秒前
LiCQ完成签到,获得积分10
6秒前
上官若男应助标致醉波采纳,获得10
7秒前
7秒前
有魅力枫叶完成签到,获得积分20
8秒前
善学以致用应助xxh采纳,获得10
8秒前
Nnaao发布了新的文献求助10
8秒前
8秒前
脑洞疼应助智慧吗喽采纳,获得10
8秒前
七七完成签到,获得积分10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130