亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images

医学 人工智能 分割 班级(哲学) 领域(数学分析) 放射科 模式识别(心理学) 计算机视觉 计算机科学 数学 数学分析
作者
Ning Yuan,Yongtao Zhang,Kuan Lv,Yiyao Liu,Aocai Yang,Pianpian Hu,Hongwei Yu,Xiaowei Han,Xing Guo,Junfeng Li,Tianfu Wang,Baiying Lei,Guolin Ma
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s40644-024-00711-w
摘要

Abstract Background Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. Methods In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. Results Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. Conclusions Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
15秒前
18秒前
孙孙发布了新的文献求助10
23秒前
彭于晏应助蒙豆儿采纳,获得30
53秒前
1分钟前
蒙豆儿发布了新的文献求助30
1分钟前
依然灬聆听完成签到,获得积分10
1分钟前
Z可完成签到,获得积分10
1分钟前
科研通AI2S应助pxy采纳,获得10
1分钟前
orixero应助袁青寒采纳,获得10
2分钟前
2分钟前
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
5分钟前
嘻嘻完成签到,获得积分10
5分钟前
abc完成签到 ,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
7分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
7分钟前
7分钟前
狂奔弟弟发布了新的文献求助10
7分钟前
狂奔弟弟完成签到,获得积分10
7分钟前
a61完成签到,获得积分10
7分钟前
8分钟前
zsc发布了新的文献求助10
8分钟前
HYQ完成签到 ,获得积分10
8分钟前
MchemG完成签到,获得积分0
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
沐雨微寒完成签到,获得积分10
10分钟前
科研通AI6应助马良采纳,获得10
10分钟前
科研通AI2S应助hairgod采纳,获得10
10分钟前
hairgod完成签到,获得积分10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
12分钟前
马良发布了新的文献求助10
12分钟前
科研通AI5应助马良采纳,获得10
13分钟前
bkagyin应助狂奔弟弟采纳,获得10
13分钟前
13分钟前
13分钟前
狂奔弟弟发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875