Emerging Trends in Generative Adversarial Networks: An Analysis of Recent Advances and Future Directions

计算机科学 生成语法 对抗制 领域(数学) 数据科学 深度学习 人工智能 新兴技术 强化学习 数学 纯数学
作者
Prateek Srivastava,Ms Yadav,Rajesh Ranjan,Javalkar Dinesh Kumar
标识
DOI:10.62919/uiei9828
摘要

This paper provides an in-depth analysis of the emerging trends in Generative Adversarial Networks (GANs), highlighting recent advancements and identifying future directions in this rapidly evolving field. GANs, as a pivotal component of unsupervised learning in artificial intelligence, have shown remarkable success in generating realistic synthetic data, which has broad implications across various domains such as image generation, video enhancement, and beyond. The study reviews the latest developments in GAN architectures, training algorithms, and their applications, underscoring the challenges associated with training stability and model convergence. It also discusses the integration of GANs with other deep learning technologies like reinforcement learning and convolutional neural networks, which have led to innovative hybrid models that push the boundaries of what is possible with artificial synthesis. Furthermore, the paper explores the ethical considerations and potential societal impacts of GAN technologies, particularly in fields like media, cybersecurity, and privacy. By synthesizing current knowledge and projecting future trends, this research aims to provide scholars and practitioners with a comprehensive understanding of where the field is headed and the potential transformations that GANs could bring to the technological landscape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
yongjiewei发布了新的文献求助10
2秒前
科目三应助aa采纳,获得10
2秒前
3秒前
ding应助Character采纳,获得10
4秒前
彧九完成签到 ,获得积分10
4秒前
LF-Scie完成签到,获得积分10
4秒前
CipherSage应助Ambi采纳,获得10
5秒前
oowt发布了新的文献求助50
5秒前
CipherSage应助闫辰龙采纳,获得10
5秒前
ytyl发布了新的文献求助10
6秒前
甜橙发布了新的文献求助10
6秒前
领导范儿应助满意的蜜蜂采纳,获得10
6秒前
香蕉觅云应助可乐采纳,获得10
7秒前
李梁发布了新的文献求助10
7秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
Dean应助科研通管家采纳,获得40
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI5应助萱萱采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
minminzi应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
minminzi应助科研通管家采纳,获得10
10秒前
yyzhou应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
Dean应助科研通管家采纳,获得60
10秒前
今后应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908175
求助须知:如何正确求助?哪些是违规求助? 4184895
关于积分的说明 12995880
捐赠科研通 3951536
什么是DOI,文献DOI怎么找? 2167047
邀请新用户注册赠送积分活动 1185523
关于科研通互助平台的介绍 1092050