已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring Skin Potential Signals in Electrodermal Activity: Identifying Key Features for Attention State Differentiation

计算机科学 钥匙(锁) 皮肤电导 国家(计算机科学) 人工智能 人机交互 计算机安全 工程类 算法 生物医学工程
作者
Yiyang Huang,Zhicong Zhang,Yanbin Yang,Pu‐Chun Mo,H. H. Zhang,Jiadong He,Shaohua Hu,Xiaozhi Wang,Yubo Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 100832-100847
标识
DOI:10.1109/access.2024.3406932
摘要

(1) Background: Assessing changes in human attention states via noninvasive physiological signals poses a significant challenge. Research has often associated the migration of mitochondrial superoxide radicals with electrical skin signals and physiological state. This study proposes a novel method to identify meaningful features for discerning variations in attention states by examining skin potential (SP) signals from specific features. (2) Methods: This research project began with gathering SP signals. Next, Wavelet Packet Transform (WPT) and other approaches are applied to conduct an energy analysis across various frequency bands, which allows for the extraction of time- and frequency-domain features from the SP signals, and the potential of these features to differentiate human attention states is then examined via regression-based classifiers. Feature selection refinement is accomplished through statistical tests and Linear Support Vector Machines (SVM) with Recursive Feature Elimination (RFE). The focus is on the discriminative power of a selected set of primary features to distinguish human attention states. (3) Results: The designed experiment revealed significant variations in SP signal features when the subjects experienced shifts in their attention states. These features encompass measures such as first- and second-order derivative sequences, wavelet energy, wavelet coefficient, and power spectral density in different frequency bands. The core significance of this research lies in its focus on the feature selection of the SP signal, which yields a set of highly impactful features contributing to the distinction of attention states. (4) Conclusion: This study underscores the potential of classifier models to effectively distinguish attention states, particularly through the examination of critical features, such as the wavelet energy of SP signals within certain frequency bands. These features may be relevant to several psychological mechanisms that reinforce the relationship between physiological signals and cognitive state. The insights derived from this investigation deepen the comprehension of human attention states and set the groundwork for more granular future explorations of SP signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨西牛完成签到 ,获得积分0
1秒前
科研通AI5应助简画采纳,获得200
2秒前
3秒前
阿莫西林0107完成签到,获得积分20
3秒前
6秒前
8秒前
8秒前
小巧安柏发布了新的文献求助10
13秒前
13秒前
xRuri发布了新的文献求助10
18秒前
sunny完成签到 ,获得积分10
19秒前
青云发布了新的文献求助30
19秒前
科目三应助天真无招采纳,获得10
21秒前
max关注了科研通微信公众号
22秒前
26秒前
29秒前
30秒前
烟花应助Lin2019采纳,获得10
32秒前
waczj完成签到,获得积分20
35秒前
36秒前
大模型应助徐徐采纳,获得10
37秒前
动听的笑晴完成签到,获得积分20
39秒前
40秒前
40秒前
42秒前
乐乐应助开心的飞扬采纳,获得10
42秒前
科研通AI5应助GVSDLIUJ采纳,获得10
43秒前
天真无招发布了新的文献求助10
44秒前
46秒前
勿忘心安发布了新的文献求助10
47秒前
48秒前
胡真完成签到 ,获得积分10
50秒前
徐徐发布了新的文献求助10
52秒前
54秒前
zhuxx发布了新的文献求助10
55秒前
lian完成签到 ,获得积分10
58秒前
小开完成签到,获得积分10
59秒前
59秒前
科研吗喽完成签到,获得积分10
1分钟前
英俊的铭应助勿忘心安采纳,获得10
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270247
关于积分的说明 9965166
捐赠科研通 2985226
什么是DOI,文献DOI怎么找? 1637815
邀请新用户注册赠送积分活动 777727
科研通“疑难数据库(出版商)”最低求助积分说明 747171