降级(电信)
赭曲霉毒素A
拉伤
化学
生物降解
微生物学
细菌菌株
食品科学
环境化学
生物
细菌
真菌毒素
有机化学
工程类
电信
遗传学
解剖
作者
Xiaojie Fu,Qingru Fei,Xuanjun Zhang,Na Li,Liang Zhang,Yu Zhou
标识
DOI:10.1016/j.jhazmat.2024.134716
摘要
Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 μg/L OTA was completely degraded by 1.0 μg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-β-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.
科研通智能强力驱动
Strongly Powered by AbleSci AI